Abstract:
A device includes one or more processors configured to derive, from among a plurality of intra prediction modes, M most probable modes (MPMs) for intra prediction of a block of video data. A syntax element indicating whether a MPM index or a non-MPM index is used to indicate a selected intra prediction mode of the plurality of intra prediction modes for intra prediction of the block of video data is decoded. Based on the indicated one of the MPM index or the non-MPM index being the MPM index, the one or more processors select, for each of one or more context-modeled bins of the MPM index, based on intra prediction modes used to decode one or more neighboring blocks, a context index for the context-modeled bin. The one or more processors reconstruct the block of video data based on the selected intra prediction mode.
Abstract:
A video decoder performs a neighboring-block based disparity vector (NBDV) derivation process to determine a disparity vector or performs a NBDV refinement (NBDV-R) process to determine the disparity vector. The video decoder uses the disparity vector as a disparity vector for a current block without using a median filtering process on multiple disparity motion vectors, wherein the current block is coded in either a skip mode or a direct mode. Furthermore, the video coder determines pixel values for the current block.
Abstract:
This disclosure describes techniques for signaling and processing information indicating simplified depth coding (SDC) for depth intra-prediction and depth inter-prediction modes in a 3D video coding process, such as a process defined by the 3D-HEVC extension to HEVC. In some examples, the disclosure describes techniques for unifying the signaling of SDC for depth intra-prediction and depth inter-prediction modes in 3D video coding. The signaling of SDC can be unified so that a video encoder or video decoder uses the same syntax element for signaling SDC for both the depth intra-prediction mode and the depth inter-prediction mode. Also, in some examples, a video coder may and/or process a residual value generated in the SDC mode using the same syntax structure, or same type of syntax structure, for both the depth intra-prediction mode and depth inter-prediction mode.
Abstract:
In an example, a method of processing video data includes splitting a current block of video data into a plurality of sub-blocks for deriving motion information of the current block, where the motion information indicates motion of the current block relative to reference video data. The method also includes deriving, separately for each respective sub-block of the plurality of sub-blocks, motion information comprising performing a motion search for a first set of reference data that corresponds to a second set of reference data outside of each respective sub-block. The method also includes decoding the plurality of sub-blocks based on the derived motion information and without decoding syntax elements representative of the motion information.
Abstract:
Example techniques related to linear model (LM) prediction decoding or encoding are described. A video decoder or video encoder determines which filter to apply from a set of filters to downsample samples of a luma block and generate a predictive block for a corresponding chroma block based on characteristics of the chroma block.
Abstract:
Techniques are described for determining whether a block in a candidate reference picture is available. A video coder may determine a location of a co-located largest coding unit (CLCU) in the candidate reference picture, where the CLCU is co-located with a LCU in a current picture, and the LCU includes a current block that is to be inter-predicted. The video coder may determine whether a block in the candidate reference picture is available based on a location of the block in the candidate reference picture relative to the location of the CLCU. If the block in the candidate reference picture is unavailable, the video coder may derive a disparity vector for the current block from a block other than the block determined to be unavailable.
Abstract:
A system and method for encoding and decoding video data. A predicted residual signal of a target color component is determined as a function of one or more linear parameters of a linear model and of a residual signal of a source color component. A residual signal of the target color component is determined as a function of a remaining residual signal of the target color component and of the predicted residual signal of the target color component.
Abstract:
In one example, a video coder, such as a video encoder or a video decoder, is configured to code a value for a layer identifier in a slice header for a current slice in a current layer of multi-layer video data, and, when the value for the layer identifier is not equal to zero, code a first set of syntax elements in accordance with a base video coding standard, and code a second set of one or more syntax elements in accordance with an extension to the base video coding standard. The second set of syntax elements may include a syntax element representative of a position for an identifier of an inter-layer reference picture of a reference layer in a reference picture list, and the video coder may construct the reference picture list such that the identifier of the inter-layer reference picture is located in the determined position.
Abstract:
A video coder determines a candidate for inclusion in a candidate list for a current prediction unit (PU). The candidate is based on motion parameters of a plurality of sub-PUs of the current PU. If a reference block corresponding to a sub-PU is not coded using motion compensated prediction, the video coder sets the motion parameters of the sub-PU to default motion parameters. For each respective sub-PU from the plurality of sub-PUs, if a reference block for the respective sub-PU is not coded using motion compensated prediction, the motion parameters of the respective sub-PU are not set in response to a subsequent determination that a reference block for any later sub-PU in an order is coded using motion compensated prediction.
Abstract:
A video coder determines a first picture order count (POC) value of a first reference picture associated with a first motion vector of a corresponding block that points in a first direction and determines whether a first reference picture list for the current block includes a reference picture having the first POC value; in response to the reference picture list not including the reference picture having the first POC value, determines a second POC value of a second reference picture associated with a second motion vector of the corresponding block that points in a second direction, determines whether the first reference picture list for the current block includes a reference picture having the second POC value and in response to the first reference picture list including the reference picture having the second POC value, decodes the current motion vector using the second motion vector of the corresponding block.