Abstract:
Methods, systems, and apparatus are disclosed for determining accurate ranging measurements between communication devices. Various embodiments are described for recording timestamps associated with when transmissions are sent and received between the communication devices. The communication devices are configured to determine a difference in their clock frequencies and to communicate this difference with one another. Furthermore, each of the communication devices is configured to compensate for these differences before or after the timestamps are exchanged and to send a compensation indicator of whether the compensation has been performed. If the compensation has not been performed, either of the communication devices can compensate for the clock frequency differences after receiving the timestamps based on the compensation indicator. By using compensated clock frequencies based on a single clock reference, highly accurate ranging measurements are obtained using round trip propagation time calculations.
Abstract:
An access point including a generation module, a transceiver, and an acknowledgment module. The generation module is configured to generate a synchronization signal. The transceiver is configured to (i) transmit the synchronization signal to a station, (ii) receive a medium access control protocol data unit based on the synchronization signal during a transmit opportunity period for the station. The acknowledgment module is configured to generate an acknowledgment signal based on the reception of the medium access control protocol data unit. The synchronization signal or the acknowledgment signal includes a null data packet frame. The null data packet frame includes a legacy signal field. The legacy signal field comprises a length of a portion of the null data packet frame subsequent to the legacy signal field. The transceiver is configured to transmit the acknowledgment signal to the station.
Abstract:
Training data for a first training session is generated to include a first data unit, the first data unit having a field that specifies a first number of beamforming training data units that can be communicated during a second training session to occur after the first training session. The training data including the first data unit is transmitted to a second device during the first training session. A second data unit received from the second device is processed to determine whether a request for the second device to participate in the second training session was accepted by the second device based on a first field of the second data unit. In response to determining that the request to participate in the second training session was accepted by the second device, the first number of beamforming training data units are transmitted during the second training session.
Abstract:
In a method for detecting, at a first communication device, a clock rate of a physical layer (PHY) data unit, the PHY data unit is received, at the first communication device, from a second communication device via a communication channel. The PHY data unit includes (i) a first portion and (ii) a second portion following the first portion. At the first communication device, the first portion of the PHY data unit is processed. Processing the first portion of the PHY data unit includes performing one or more autocorrelations to generate one or more respective autocorrelation outputs. At the first communication device and based on at least one of the one or more autocorrelation outputs, a clock rate of the second portion of the PHY data unit is determined.
Abstract:
Systems and techniques relating to wireless communications are described. A described technique includes obtaining data for transmission to a wireless communication device, the device being configured to process incoming transmissions based on an aggregate data unit format that specifies signaling for aggregating multiple medium access control (MAC) protocol data units (MPDUs); generating, based on the data and the aggregate data unit format, an aggregate MPDU (A-MPDU) that includes a single MPDU having a length greater than zero, the single MPDU residing in a subframe of the A-MPDU; setting a delimiter of the subframe to indicate that the single MPDU is the only MPDU within the A-MPDU that has a length greater than zero, and to cause the device to accept the A-MPDU without a corresponding block acknowledgement agreement; including, in a physical (PHY) frame, the A-MPDU; and transmitting the PHY frame to the device.
Abstract:
Methods and apparatuses are provided for providing compressed feedback channel state information for beamforming. A beam transmitted by a transmission source is received at a receiving device. The receiving device computes a channel state matrix H of the transmission channel based on the received beam. Using the channel state matrix H, the receiving device performs a singular value decomposition procedure that produces a steering matrix V. The singular value decomposition procedure generates a set of angles (θV, φ) from which the steering matrix V can be computed. The receiving device transmits the set of angles (θV, φ) to the transmitting device. From the set of angles (θV, φ), the transmitting device can compute the steering matrix V.
Abstract:
In a method for generating a data unit, a signal field is generated to include a first subfield having one of: a length indication to indicate a number of bytes in a data portion of the data unit, or a duration indication to indicate a number of OFDM symbols in the data portion of the data unit and a second subfield to indicate whether the first subfield includes the length indication or the duration indication. When the first subfield includes the length indication, one or more padding bits are added to a set of information bits according to a first padding scheme. When the first subfield includes the duration indication, one or more padding bits are added to the set of information bits to according to a second padding scheme. Padded information bits are encoded, and the data unit is generated to included the encoded information bits.
Abstract:
Methods and apparatuses are provided for providing compressed feedback channel state information for beamforming. A beam transmitted by a transmission source is received at a receiving device. The receiving device computes a channel state matrix H of the transmission channel based on the received beam. Using the channel state matrix H, the receiving device performs a singular value decomposition procedure that produces a steering matrix V. The singular value decomposition procedure generates a set of angles (θV, φ) from which the steering matrix V can be computed. The receiving device transmits the set of angles (θV, φ) to the transmitting device. From the set of angles (θV, φ), the transmitting device can compute the steering matrix V.
Abstract:
In a system having a first communication device with a first plurality of radio-frequency (RF) chains coupled to a first plurality of antennas and a second communication device with a second plurality of RF chains coupled to a second plurality of antennas, the second communication device receives consecutive training packets that were transmitted by the first communication device, the consecutive training packets having been produced at the first communication device by a power level rule to the first plurality of RF chains. The second communication device determines respective channel measurements corresponding to the consecutive training packets based on the power level rule, and selects a transmit parameter based on the respective channel measurements, the transmit parameter to be used by the first communication device when transmitting to the second communication device. The second communication device transmits and indication of the selected transmit parameter to the first communication device.
Abstract:
Methods, systems, and apparatus are disclosed for determining accurate ranging measurements between communication devices. Various embodiments are described for recording timestamps associated with when transmissions are sent and received between the communication devices. The communication devices are configured to determine a difference in their clock frequencies and to communicate this difference with one another. Furthermore, each of the communication devices is configured to compensate for these differences before or after the timestamps are exchanged and to send a compensation indicator of whether the compensation has been performed. If the compensation has not been performed, either of the communication devices can compensate for the clock frequency differences after receiving the timestamps based on the compensation indicator. By using compensated clock frequencies based on a single clock reference, highly accurate ranging measurements are obtained using round trip propagation time calculations.