Abstract:
The present invention provides for spreading a first signal using a plurality of spreading codes, multiplexing the first spread signal by code division multiplexing, transmitting the first multiplexed signal via a plurality of neighboring frequency resources of an OFDM symbol of a first antenna set, spreading a second signal using a plurality of spreading codes, multiplexing the second spread signal by code division multiplexing, transmitting the second multiplexed signal via a plurality of neighboring frequency resources of the OFDM symbol of the first antenna set, transmitting the first multiplexed signal via a plurality of neighboring frequency resources of an OFDM symbol of a second antenna set, and transmitting the second multiplexed signal via a plurality of neighboring frequency resources of the OFDM symbol of the second antenna set, wherein the first multiplexed signal is transmitted on frequency resources that neighbor frequency resources that the second multiplexed signal is transmitted on.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A−10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method of receiving a packet in a wireless local area network system includes receiving, from an access point (AP), a packet comprising a data field and a first signal field including a first field, a second field, and a third field, wherein the packet is generated for a single receiving station or a plurality of receiving stations; and processing the packet based on the first signal field, wherein the first field indicates a group ID of the single receiving station or the plurality of receiving stations and whether the packet is generated based on a single user transmission scheme or a multi user transmission scheme, wherein, for the single user transmission scheme, at least one pre-determined value of the first field is used to indicate that the packet is generated based on the single user transmission scheme.
Abstract:
According to one embodiment, a method for transmitting an uplink signal includes transmitting the uplink signal including a block of data symbols. The block of data symbols are mapped to at least two sets of subcarrier blocks. Each data symbol of the block of data symbols is mapped to one of subcarriers of the at least two sets of subcarrier blocks. The at least two sets of subcarrier blocks are not contiguous in frequency. The block of data symbols are mapped in sequence starting with a first data symbol to the at least two sets of subcarrier blocks and in increasing order of subcarrier index.
Abstract:
A packet data transmitting method and mobile communication system using the same enables transmission of common ACK/NACK information from each sector of a base station to a user entity in softer handover. The method includes receiving via at least one of the plurality of sectors a data packet from the mobile terminal, the data packet being correspondingly received for each of the at least one of the plurality of sectors; combining the correspondingly received data packets, to obtain a signal having a highest signal-to-noise ratio; decoding the value obtained by the combining; determining a transmission status of the data packet according to the decoding; and transmitting to the mobile terminal a common ACK/NACK signal including one of a common ACK signal and a common NACK signal according to the determining, the common ACK/NACK signal being transmitted via each of the at least one sector.
Abstract:
A method of transmitting information on a modulation and coding scheme (MCS) in a wireless local area network system is provided. A responding station receives a physical layer protocol data unit (PPDU) from a requesting station, configures a MCS feedback (MFB) based on the PPDU, and transmits feedback information to the requesting station. If the MFB is configured as a response to a MFB request (MRQ) of the requesting station, the feedback information includes the configured MFB and a MFB type field indicating that the MFB is configured as a response to the MRQ of the requesting station. If the MFB is not configured as a response to the MRQ of the requesting station, the feedback information includes the configured MFB, a MFB type field indicating that the MFB is not configured as a response to the MRQ of the requesting station, and coding information indicating a PPDU coding type.
Abstract:
A method for generating a channel quality indicator (CQI) in a mobile communication system is presented. The method includes grouping a number of subcarriers to form at least one channel quality indicator subband for generating a channel quality indicator, and generating a channel quality indicator in each channel quality indicator subband, wherein a size of each channel quality indicator subband is dependent on a system bandwidth value and is an integer multiple of a downlink frequency resource unit size, wherein the downlink frequency resource unit size is prescribed according to the system bandwidth value.
Abstract:
A method for receiving Acknowledgement/Negative acknowledgement (ACK/NACK) information in a mobile communication system includes receiving a first signal including first spread ACK/NACK information and second spread ACK/NACK information from a first antenna set of a transmitting end in an orthogonal frequency division multiplexing (OFDM) symbol; receiving a second signal including third spread ACK/NACK information and fourth spread ACK/NACK information from a second antenna set of the transmitting end in an OFDM symbol; and de-spreading at least the first and third spread ACK/NACK information or the second and fourth spread ACK/NACK information for identifying the ACK/NACK information.
Abstract:
A method and terminal apparatus are described for allocating resources for transmitting a signal in a multiple-input multiple-output (MIMO) wireless communication system. An uplink signal is transmitted using L layers at a terminal in a multiple-input multiple-output (MIMO) wireless communication system. Modulation symbols are generated by modulating output bit sequences of an interleaver matrix by a unit of log2 Q bits. Q is a modulation order, and each of the output bit sequences has a size of L·log2 Q bits. The modulation symbols are mapped to the L layers and transmitted by using the L layers. The output bit sequences are generated by reading out entries of the interleaver matrix, column by column.