Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A−10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
The present invention provides for applying a cyclic redundancy check (CRC) to a data signal. The present invention includes attaching a first CRC to a first data signal block having a first length, segmenting the first data signal block attached with the first CRC into a plurality of second data signal blocks having a length shorter than the first length, respectively generating a second CRC for each second data signal block, and attaching the generated second CRC to the respective second data signal block. Moreover, the first CRC and second CRC may be generated from respectively different CRC generating polynomial equations.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A−10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
The present invention provides for applying a cyclic redundancy check (CRC) to a data signal. The present invention includes attaching a first CRC to a first data signal block having a first length, segmenting the first data signal block attached with the first CRC into a plurality of second data signal blocks having a length shorter than the first length, respectively generating a second CRC for each second data signal block, and attaching the generated second CRC to the respective second data signal block. Moreover, the first CRC and second CRC may be generated from respectively different CRC generating polynomial equations.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.