Abstract:
A flexible organic electroluminescent device and a manufacturing method thereof are provided. The device comprises a substrate (101), an anode layer (103), a hole-injecting layer (104), a hole-transporting layer (105), a light-emitting layer (106), an electron-transporting layer (107), an electron-injecting layer (108), and a cathode layer (109), which are stacked in order. The device further comprises a buffer layer (102) between the substrate (101) and the anode layer (103). The anode layer (103) is a multilayer composite structure, which comprises ZnS/Ag/MoO3. The bonding force between the anode layer (103) and the substrate (101) is enhanced by inserting buffer layer (102). The device has a good bending endurance performance, a stable luminous property and a high light emitting efficiency.
Abstract:
An organic electroluminescent device (OELD) and the fabrication method thereof are disclosed. The OELD comprises an anode(1), a cathode(2) opposite to the anode(1) and a light emission structure(3) between the anode(1) and the cathode(2).The OELD also comprises an insulation layer(4) between the anode(1) and the light emission structure(3) and the insulation layer(4) is attached to the anode(1).The material of the insulation layer(4) is a lithium salt compound and the thickness of the insulation layer(4) is 0.5-5 nm. The insulation layer is arranged on the anode(1) to block the velocity of holes injecting into the light emission structure(3) from the anode, thereby ensuring the consistency in the amount of holes and electrons of the light emission structure(3), highly increasing the recombination probability of electrons and holes and reducing the influence of excess holes to the emission property of the device. Therefore the emission property of the device is highly improved.
Abstract:
A method for realizing a multimedia call includes the following steps. A call request initiated by a calling terminal is received. An indication of the multimedia negotiation capability of the calling terminal is acquired, in which the indication of the multimedia negotiation capability identifies whether the terminal has the capability of supporting multiple multimedia negotiations or not. It is determined, according to the indication of the multimedia negotiation capability, whether the calling terminal has the capability of supporting multiple multimedia negotiations or not. A multimedia call connection is performed according to the multimedia negotiation capability of the calling terminal. It is determined, according to the factor whether the calling terminal has the capability of supporting multiple multimedia negotiations or not, how to perform the multimedia call connection, so as to flexibly realize the multimedia call connection accordingly.
Abstract:
This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
Abstract:
A media stream processing method, a communication system, and a relevant device are disclosed, so as to improve the user experience. The method includes the following steps: a first media receiving device receives media streams, where the media streams include a first media stream and a second media stream; and the first media receiving device processes the first media stream quickly and plays the second media stream normally so that media play progress of the first media receiving device is synchronous with media play progress of the second media receiving device, where the second media receiving device is configured to receive multicast media streams, and the first media receiving device and the second media receiving device are in the same multicast group. A communication system and a relevant device are also disclosed herein. In this way, the user experience is improved.
Abstract:
A network entity located in a first network using a first protocol, the network entity supporting at least the first protocol of the first network and a second protocol of a second network. The network entity comprises a receiving unit for receiving data packets according to the first or second protocol, a mapping table for storing addresses according to the first and second protocols, an address determination unit for determining a destination address for a received packet from the mapping table, and a routing unit for routing the received packet in accordance with the determined destination address.
Abstract:
This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
Abstract:
A method, device and system for implementing Multimedia Ring Back Tone (MRBT) are provided, where the method includes: when a multimedia terminal sends a multimedia call request to a non-multimedia terminal, receiving the multimedia call request forwarded by a Mobile Switching Center (MSC) according to subscription information for an MRBT service of the non-multimedia terminal acquired by a Home Location Register (HLR), wherein the multimedia call request includes a unique identifier of the non-multimedia terminal and/or a unique subscription identifier in the subscription information; and determining the non-multimedia terminal as a subscription terminal for the MRBT service according to a correspondence between the acquired unique identifier and the non-multimedia terminal or to the unique subscription identifier in the subscription information, and playing the MRBT to the multimedia terminal. Therefore, the calling multimedia terminal may not only communicate with the called non-multimedia terminal in voice, but also view other media information including videos.
Abstract:
Phenyl acetamide compounds are described, including compounds of Formula I: or a solvate, hydrate or pharmaceutically acceptable salt thereof; wherein R3-R6, R11, B, Y and W are set forth in the specification. The compounds of the invention are potent inhibitors of proteases, especially trypsin-like serine proteases, such as thrombin and factor Xa. Compositions for inhibiting loss of blood platelets, inhibiting formation of blood platelet aggregates, inhibiting formation of fibrin, inhibiting thrombus formation, and inhibiting embolus formation are described. Other uses of compounds of the invention are as anticoagulants either embedded in or physically linked to materials used in the manufacture of devices used in blood collection, blood circulation, and blood storage, such as catheters, blood dialysis machines, blood collection syringes and tubes, blood lines and stents. Additionally, the compounds can be detectably labeled and employed for in vivo imaging of thrombi.