Abstract:
Embodiments of the present invention provide a method for feeding back a channel quality indicator, and a method and an apparatus for sending resource scheduling information. An apparatus for feeding back a channel quality indicator includes: a determining module, configured to determine a feedback granularity of a CQI according to a system bandwidth, a CQI feedback mode, and antenna port quantity information specified by a network device; and a feedback module, configured to feed back the CQI to the network device according to the feedback granularity of the CQI. The method for feeding back a channel quality indicator, and the method and the apparatus for sending resource scheduling information provided in the embodiments of the present invention are used to reduce system overheads.
Abstract:
Various embodiments of the present invention provide a pilot resource allocation method, where the method includes: determining, according to an aggregation level and multiplexing information of an enhanced control channel element E-CCE in a resource block pair, the number of resource elements REs that are allocated to and occupied by a demodulation pilot signal DMRS in the resource block pair. Various embodiments of the present invention further provide a corresponding user equipment. By implementing the method and device, the efficiency of time-frequency resource utilization can be improved.
Abstract:
Embodiments of the present invention provide methods for transmitting and receiving a control channel, a base station, and a user equipment, which relate to the communication field, and can solve a transmission problem of available changing transmission resources caused by introduction of an E-PDCCH. A method for configuring a control channel resource includes: determining, by a base station according to a system configuration and/or user configuration, resource elements REs included in an extended control channel element E-CCE, and transmitting an extended physical downlink control channel E-PDCCH to a user equipment, where the E-PDCCH is carried by the E-CCE; and receiving, by the user equipment, the E-PDCCH, and obtaining the REs included in the E-CCE, and receiving, over the REs included in the E-CCE, the E-PDCCH transmitted by the base station. The embodiments of the present invention are used for configuring and detecting a control channel resource.
Abstract:
The present invention provides a precoding matrix indicator feedback method, a receive end, and a transmit end. The method includes: selecting, by a receive end based on a reference signal, a precoding matrix W from a codebook, where a coefficient α is used to perform phase adjustment on φn in W, φn represents a phase difference between weighted values of a first antenna group and a second antenna group of a transmit end for a transmission signal from a same transmission layer, φ n ∈ { ⅇ j 2 π n Q } , and the first antenna group and the second antenna group belong to a same multi-antenna system; and sending, by the receive end, a precoding matrix indicator (PMI) to the transmit end. In this way, using the coefficient α to perform the phase adjustment on φn can increase a size of a codebook set applicable to different antenna configurations, and improve precision of the receive end to feed back a PMI.
Abstract:
Embodiments of the present invention provide a method for processing feedback information, a base station, and a user equipment. The method includes: determining, by a base station, a feedback manner of HARQ feedback information, where the feedback manner includes feeding back the HARQ feedback information or not feeding back the HARQ feedback information; and sending, by the base station, first signaling to a user equipment, where the first signaling carries the feedback manner of the HARQ feedback information. The embodiments of the present invention can improve an HARQ mechanism, so as to support new technologies in a small cell more effectively.
Abstract:
A reference signal measurement method, a reference signal sending method, a user equipment, and a base station are provided. According to solutions in the embodiments of the present application, a user equipment determines reference signal resource configuration, which includes reference signal port configuration, reference signal subframe configuration, and reference signal configuration, and a quantity of ports configured in the reference signal port configuration is N; receives a reference signal according to the reference signal resource configuration; and performs measurement based on the received reference signal to obtain channel state information and/or signal quality information. In the embodiments of the present invention, a quantity of ports configured in the reference signal port configuration is N; and a quantity of supported ports may vary with different values of N.
Abstract:
The present invention provides a method, base station, and user equipment for transmitting a control channel. Grouping is performed, according to an aggregation level of the to-be-transmitted control channel, on sub-blocks in physical resource blocks configured by the base station for the to-be-transmitted control channel, then interleaving is performed, and then candidate control channels are mapped to the interleaved sub-blocks, so that any candidate control channel of the to-be-transmitted control channel is sent on consecutive time-frequency resources as possible, and meanwhile different candidate control channels are on different PRB pairs as possible. In this way, the base station may have better flexibility during actual sending of the ePDCCH, thereby not only achieving a precoding gain and facilitating better transmission of control information, but also achieving a larger scheduling gain.
Abstract:
Embodiments of the present invention disclose a method and an apparatus for transmitting data, and the method includes: first setting at least two second resource groups in each first resource group of at least one first resource group, and setting at least two reference signals in each of the second resource groups; then encoding data to be transmitted and generating two data streams from the encoded data; then, mapping the two data streams onto an available resource element of two different antenna ports, in which the reference signals corresponding to the two different antenna ports are set on two different second resource groups; and finally, transmitting, on the available resource element of the two different antenna ports, data on the two antenna ports. The present invention is applicable to the field of communications systems.
Abstract:
A precoding processing method and user equipment are disclosed. The precoding processing method includes: selecting a codebook vector for performing precoding processing for data among a codebook set of Nt antennas, where the codebook set includes a first codebook vector [ A B ] of a uniform linear array and a second codebook vector [ A - B ] generated according to the first codebook vector, where A is a (Nt/2)×1 vector composed of a first half of elements of the first codebook vector, B is a (Nt/2)×1 vector composed of a last half of elements of the first codebook vector, and Nt is a positive even number; and sending an index number of the codebook vector to a base station, whereupon the base station uses the codebook vector corresponding to the index number to perform precoding processing for the data to be transmitted by the antennas. Embodiments of the present invention make the codebook set compatible with two types of antenna configuration modes.
Abstract:
The present invention provides a signal sending apparatus, a signal detection apparatus, a signal sending and detection system, a signal sending method, and a signal detection method. The apparatus determines a time unit that is in each time window and that is used to transmit a synchronization signal, and transmits the synchronization signal in the determined time unit in each time window. Therefore, a synchronization signal is always located in a time unit that has a fixed location in each time window, so that a device at a receive end needs to perform detection only in a fixed time unit in each time window, thereby reducing complexity of designing and detecting the synchronization signal.