Abstract:
Embodiments of the present disclosure disclose a shift register unit, a driving method thereof, and a device. The shift register unit includes an input circuit, a node control circuit, a first control output circuit, a second control output circuit and an output circuit. By providing the first control output circuit and the second control output circuit, the first control output circuit and the second control output circuit may operate alternately, so that the first control output circuit and the second control output circuit may have time for characteristics recovery respectively, thus improving the service life and output stability of the shift register unit.
Abstract:
A display screen, a display device, a display circuit used for the display screen and a brightness compensation method therefor. The display screen (10) includes a normal display area (11) and a transparent display area (12). The display circuit (20) includes: a first pixel circuit (21), wherein the first pixel circuit is arranged at the normal display area; and a second pixel circuit (22), wherein the second pixel circuit is arranged at the transparent display area. The structure of the first pixel circuit is different from that of the second pixel circuit, so that the light transmittance of the transparent display area is higher than the light transmittance of the normal display area.
Abstract:
The present disclosure provides a display substrate and a display device. The display substrate includes a first reference voltage line, a second reference voltage line and a first reference voltage auxiliary line, the first reference voltage line, the second reference voltage line and the first reference voltage auxiliary line are respectively disposed in one of a second wiring layer, a third wiring layer and a fourth wiring layer, the first reference voltage line is electrically coupled to the first reference voltage auxiliary line through via holes penetrating an insulating layer therebetween, the first reference voltage line and the first reference voltage auxiliary line extend in different directions, the second reference voltage line and the first reference voltage auxiliary line extend in a same direction, the first reference voltage line extends in a row or column direction, and the second reference voltage line extends in the row or column direction.
Abstract:
A display panel and a display device are disclosed, the display panel includes a plurality of display regions, a peripheral region surrounding the plurality of display regions, a plurality of light-emission control scan driving circuits provided in the peripheral region, a first start signal line, and a second start signal line. The first start signal line is different from the second start signal line, the plurality of display regions include a first display region and a second display region, the plurality of light-emission control scan driving circuits include a first light-emission control scan driving circuit and a second light-emission control scan driving circuit, the first start signal line is configured to provide a first start signal to the first light-emission control scan driving circuit, and the second start signal line is configured to provide a second start signal to the second light-emission control scan driving circuit.
Abstract:
A display substrate and a display device. The display substrate includes a first sub-pixel, a second sub-pixel, and a first spacer. A line connecting the center of the first sub-pixel and the center of the second sub-pixel is a center line; the center line is not perpendicular to a first direction; the first direction is at least one of the row direction or the column direction. The first spacer is disposed between the first sub-pixel and the second sub-pixel, and the extension direction of first spacer between the first sub-pixel and the second sub-pixel is not perpendicular to the first direction.
Abstract:
A substrate, an edge polishing detection method and device and a positioning method and device for the same, an exposure apparatus and an evaporation device are provided. The substrate includes a base substrate and at least one edge polishing detection pattern on the base substrate. The at least one edge polishing detection pattern is provided at an edge of the base substrate and made of a conductive material.
Abstract:
An organic light emitting display panel and manufacturing method thereof and a display device, which can reduce the critical dimension bias of the pixel defining layer and improve the display uniformity is disclosed. The organic light emitting display panel includes a pixel defining layer, which is provided with a plurality of light emitting material filling areas, a metal layer provided on the pixel defining layer; the metal layer is provided with openings corresponding to the light emitting material filling areas respectively. The display effect of the organic light emitting display device is thereby improved.
Abstract:
The present disclosure provides a Low Temperature Poly Silicon (LTPS) backboard, a method for manufacturing the LTPS, and a light-emitting device. The LTPS backboard includes: a base substrate, and a thin film transistor (TFT) and a light blocking layer that are arranged above the base substrate, wherein the light blocking layer is arranged above the TFT, and the light blocking layer is configured for preventing an irradiation light from irradiating onto the TFT.
Abstract:
An array substrate, a display panel and a display device are provided. The array substrate comprises: an active area, a package area and a drive circuit area, wherein the drive circuit area is located between the active area and the package area. A package metal layer is provided at the package area, and at least one groove structure is provided on a side of the package metal layer in a proximity to the drive circuit area. At least one drive unit is provided at the drive circuit area and comprises at least one element, wherein the element is provided in the groove structure.
Abstract:
The present disclosure provides an organic light emitting diode array substrate and its manufacturing method, as well as a display device. The organic light emitting diode array substrate includes: gate lines, data lines, and a plurality of pixel units defined by the gate lines and the data lines. Each pixel unit comprises a first region which emits light and a second region which does not emit light. The first region is provided with an organic light emitting diode, and the second region is provided with a conductive unit which is connected in parallel with the data line and arranged at the same layer with a cathode of the organic light emitting diode.