Abstract:
A circuit or combined ballast for driving a fluorescent lamp and at least one light emitting diode (LED) includes an integrated driver circuit having an alternating current (AC) circuit that includes at least one ballast coil for driving the fluorescent lamp and a direct current circuit for driving the LED having a secondary winding inductively coupled with the fluorescent lamp ballast coil for driving the LED. A method of driving a lamp assembly includes at least one fluorescent lamp and at least one light emitting diode (LED) and a combined driver circuit for supplying both the fluorescent lamp and the LED. The combined driver circuit supplies high voltage AC supply to a first portion of the driver circuit to the fluorescent lamp, supplies low voltage DC supply in a second portion of the driver circuit to the LED, and provides a secondary winding in the second portion of the driver circuit that is inductively coupled with a ballast coil in the first portion of the driver circuit that drives the fluorescent lamp.
Abstract:
Combinatorial processing including rotation and movement within a region is described, including defining multiple regions of at least one substrate, processing the multiple regions of the at least one substrate in a combinatorial manner, rotating a head in one of the multiple regions to perform the processing, and repositioning the head relative to the one of the multiple regions while rotating the head during the processing.
Abstract:
Methods of modifying a patterned semiconductor substrate are presented including: providing a patterned semiconductor substrate surface including a dielectric region and a conductive region; and applying an amphiphilic surface modifier to the dielectric region to modify the dielectric region. In some embodiments, modifying the dielectric region includes modifying a wetting angle of the dielectric region. In some embodiments, modifying the wetting angle includes making a surface of the dielectric region hydrophilic. In some embodiments, methods further include applying an aqueous solution to the patterned semiconductor substrate surface. In some embodiments, the conductive region is selectively enhanced by the aqueous solution. In some embodiments, methods further include providing the dielectric region formed of a low-k dielectric material. In some embodiments, applying the amphiphilic surface modifier modifies an interaction of the low-k dielectric region with a subsequent process.
Abstract:
Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed by depositing a metal-containing material on a silicon-containing material. The metal-containing material may be oxidized to form a resistive-switching metal oxide. The silicon in the silicon-containing material reacts with the metal in the metal-containing material when heat is applied. This forms a metal silicide lower electrode for the nonvolatile memory element. An upper electrode may be deposited on top of the metal oxide. Because the silicon in the silicon-containing layer reacts with some of the metal in the metal-containing layer, the resistive-switching metal oxide that is formed is metal deficient when compared to a stoichiometric metal oxide formed from the same metal.
Abstract:
Described herein are technologies for overcoming technical problems associated with implementing a system for search and analysis of technical information over a computer network. For example, described herein are systems and methods for overcoming technical problems associated with implementing a system for search and analysis of scientific and engineering studies data over a computer network. With respect to some embodiments, described herein are technologies leveraging computer networking and a software architecture to overcome technical problems associated with implementing search and analysis systems for technical information.
Abstract:
Embodiments of the invention generally relate to methods and compositions for forming conformal coatings on textured substrates. More specifically, embodiments of the invention generally relate to sol-gel processes and sol-gel compositions for forming low refractive index conformal coatings on textured transparent substrates. In one embodiment a method of forming a conformal coating on a textured glass substrate is provided. The method comprises coating the textured glass substrate with a sol-gel composition comprising a solidifier. It is believed that use of the solidifier expedites the sol-gel transition point of the sol-gel composition leading to more conformal deposition of coatings on textured substrates.
Abstract:
A load store advisory program sets a breakpoint within a load-store sequence of a program, determines if the breakpoint will cause unexpected behavior, and generates a warning if it is determined that the breakpoint will cause unexpected behavior. The unexpected behavior may be the result of setting a breakpoint within a load-store sequence that, because of the breakpoint, will repeatedly fail.
Abstract:
In one embodiment, a router may store a “neighbor table” for storing the router's Border Gateway Protocol (BGP) neighbors. Each neighbor corresponds to a virtual routing and forwarding (VRF) instance and associated VRF identifier (ID), and the neighbor table indexes the BGP neighbors according to their respective VRF ID. In response to initiating a BGP update generation for a BGP table having BGP network entries, each entry having an associated VRF ID that indicates to which VRF instance the BGP entry is to be advertised, a single lookup operation for each BGP entry is performed into the neighbor table based on the corresponding VRF ID of each BGP entry to determine a corresponding VRF update group of indexed BGP neighbors to which each BGP entry is to be advertised. Accordingly, a shared BGP update may be generated for each VRF update group for the initiated BGP update generation.
Abstract:
In general, techniques are for providing a direct forwarding path between virtual routers within a single virtualized routing system. In one example, a method includes combining forwarding information from a plurality of virtual routers into collapsed forwarding information that comprises one or more direct forwarding paths between the respective virtual routers. The method also includes determining a direct forwarding path to an egress interface of the second virtual router, in response to receiving a network packet at an ingress interface of a first virtual router. The method also includes forwarding the network packet from the ingress interface of the first virtual router to the egress interface of the second virtual router using the direct forwarding path, wherein the network packet traverses a switch fabric directly from the ingress interface of the first virtual router to the egress interface of the second virtual router.
Abstract:
A ballast comprises an inverter circuit for providing an oscillating current signal for energizing the at least one lamp. The inverter circuit comprises a first switching component and a second switching component each having a collector terminal, a base terminal, and an emitter terminal. And, each switching component is configured for alternately operating between a conductive state and a non-conductive state. A first collector-emitter circuit is connected between the collector terminal and the emitter terminal of the first switching component, wherein the first collector-emitter circuit has a first resistance of zero or more Ohms. A second collector-emitter circuit is connected between the collector terminal and the emitter terminal of the second switching component, wherein the second collector-emitter circuit has a second resistance of zero or more Ohms and the first resistance and the second resistance are unequal.