摘要:
The invention provides a method, data compression system, apparatus, and article of manufacture which reduce the error in transform equations in which constants are replaced by approximations. According to the invention transform constants are replaced with approximations which are a function of an integer and a floating point value. The transform equation is then performed with the integers in place of the constants. The floating point value may be applied either to the result of the equation or to the data to be processed by the transform equation before the equation is performed. Further the floating point value may be applied using a fixed precision version of the value or a fixed precision value into which the floating point value has been factored.
摘要:
Rapid throughput of still image compressed data (e.g. JPEG) is achieved for presentation of images in rapid succession for browsing or browsing by panning within large images by using a hardware decoder adapted for presentation of moving images to reduce the processing load which must be performed in accordance with software although the still image data is incompatible with still image data in many respects; some of which necessarily lead to a loss of image fidelity. The still image data is partially decoded (e.g. entropy decoded) in software processing and re-encoded and reformatted to a form which can at least be accepted by the hardware decoder even though not compliant with any particular moving picture data standard (e.g. MPEG). Storage in the hardware decoder is reallocated to provide, in combination with a reduction of slower software processing, a throughput increase of four-fold or more. Software processing of the still image data is also allowed to proceed and the result substituted for the result of the hardware decoding if a given image is viewed for a time sufficient for the software image processing to be completed.
摘要:
Rapid throughput of still image compressed data (e.g. JPEG) is achieved for presentation of images in rapid succession for browsing or browsing by panning within large images by using a hardware decoder adapted for presentation of moving images to reduce the processing load which must be performed in accordance with software although the still image data is incompatible with still image data in many respects; some of which necessarily lead to a loss of image fidelity. The still image data is partially decoded (e.g. entropy decoded) in software processing and re-encoded and reformatted to a form which can at least be accepted by the hardware decoder even though not compliant with any particular moving picture data standard (e.g. MPEG). Storage in the hardware decoder is reallocated to provide, in combination with a reduction of slower software processing, a throughput increase of four-fold or more. Software processing of the still image data is also allowed to proceed and the result substituted for the result of the hardware decoding if a given image is viewed for a time sufficient for the software image processing to be completed.
摘要:
Methods and systems for improving performance of data decoding using apriori information about the data steam. In one aspect a decoder may determine the degree of lossiness inherent in the data or in the application of the data as a maximum resolution of data to be decoded and may thereby streamline entropy decoding of the data. For example, in DCT-based image data compression coupled with Huffman or other entropy encoding, apriori data may be analyzed to determine the maximum required resolution in bits of the DCT encoded data so as to simplify the entropy decoding. Other aspects optimize DCT decoding computation with faster approximations where the quantization values indicate a higher degree of lossiness or noise in the DCT encoded data. Apriori information may generally comprise values in the quantization table of a DCT encoded image and may be analyzed to determine the maximum symbol size and/or degree of lossiness.
摘要:
Provided are a method, system, and program for decoding compressed data. Compressed data is received and decoded. An error is detected while decoding a first location in the compressed data. A reentry data set is accessed having a pointer to a second location in the compressed data following the first location and decoding information that enables decoding to start from the second location. The second location in the compressed data is accessed and the decoding information in the accessed reentry data set is used to continue decoding the compressed data from the second location.
摘要:
Data is stored in multiple formats based on the nature of the data and the characteristics of the possible output devices to minimize processing requirements and processing time while maximizing output quality. A data set is broken into objects and further into units so that each unit within an object contains a similar data type. Units that require less processing power for presentation are stored in a device-independent format. Units that require more processing power for presentation are stored in device-dependent form at determined by the presentation parameters of an attached peripheral presentation device. At presentation time a document database, or storage area, assembles the document from the units determined by the presentation device. The document is composed of data that is specific for the presentation device or data that is device independent. The data is output to a physical output device such as a display, a printer, a fax, or a logical output device such as an email generator or any other data processing system.
摘要:
Provided are a method, system, and program for decoding compressed data. Compressed data is received and decoded. An error is detected while decoding a first location in the compressed data. A reentry data set is accessed having a pointer to a second location in the compressed data following the first location and decoding information that enables decoding to start from the second location. The second location in the compressed data is accessed and the decoding information in the accessed reentry data set is used to continue decoding the compressed data from the second location.
摘要:
A method, system, and data structure for the scaling down of data is provided. At least two blocks of transformed data samples representing at least two blocks of original data samples are received. One of at least two tables of constants is selected wherein each table of constants is capable of reducing the number of transformed data samples by a different factor. The constants taken from the selected table are applied to the at least two blocks of transformed data samples to produce one block of transformed data samples representing one block of final data samples. The data is processed one dimension at a time by multiplying the data in one dimension with selected constants taken from previously developed tables corresponding to the desired scale down factor. Scaling down by different factors in each dimension as well as scaling down in one dimension and scaling up in the other dimension may be achieved. In addition, the de-quantization of the quantized transform coefficients may be accomplished by pre-multiplication of the selected constants when the quantization values are known. In a similar way the re-quantization may be accomplished by a pre-division of the selected constants. Both de-quantization and re-quantization may be combined when the input quantized transform coefficients and output quantized transform coefficients are desired.
摘要:
Rapid throughput of still image compressed data (e.g. JPEG) is achieved for presentation of images in rapid succession for browsing or browsing by panning within large images by using a hardware decoder adapted for presentation of moving images to reduce the processing load which must be performed in accordance with software although the still image data is incompatible with still image data in many respects; some of which necessarily lead to a loss of image fidelity. The still image data is partially decoded (e.g. entropy decoded) in software processing and re-encoded and reformatted to a form which can at least be accepted by the hardware decoder even though not compliant with any particular moving picture data standard (e.g. MPEG). Storage in the hardware decoder is reallocated to provide, in combination with a reduction of slower software processing, a throughput increase of four-fold or more. Software processing of the still image data is also allowed to proceed and the result substituted for the result of the hardware decoding if a given image is viewed for a time sufficient for the software image processing to be completed.
摘要:
Image rotations of 90°, 180° and 270° and horizontal and vertical mirroring image transformations are performed losslessly and with greatly enhanced speed by processing orthogonal transform coefficients in a zig-zag order with direct storage of S (size) values, reassociated R (run of zero valued coefficients) from an adjacent coded orthogonal transform value and a non-zero valued transformation coefficient in reverse zig-zag order. Cache misses are avoided by processing values which are not widely separated in the coded data and other features of the technique and memory accesses are reduced to accelerate processing while extremely little computation is required. These effects are substantially augmented when intermediate codes having certain attributes including coding of zero valued coefficients and flagging certain code features are employed.