Abstract:
An embodiment of the present disclosure discloses an evaporation method, including: providing a flexible substrate having an original size; stretching the flexible substrate to have an evaporation size, wherein, the evaporation size is greater than the original size; arranging a mask on a side of the flexible substrate having the evaporation size; evaporating a material onto the flexible substrate having the evaporation size by using the mask, to form a patterned film layer.
Abstract:
The present disclosure provides a quantum dot film, a method for manufacturing the same and a backlight module. The quantum dot film comprises a quantum dot layer and an optical waveguide layer, the quantum dot layer covers the optical waveguide layer, the optical waveguide layer is a laminated structure made up of a plurality of sublayers, and starting from the sublayer close to the quantum dot layer in the laminated structure, the refractive indices of sublayers become larger layer by layer. The backlight module comprises the above-mentioned quantum dot film, and the quantum dot film is located between the optical waveguide layer and the prism film.
Abstract:
The present disclosure discloses a composite film and a method for manufacturing the same, and an organic light-emitting diode and a method for packaging the same. The composite film comprises: a base membrane; a PDDA layer, which is deposited on a first surface of the base membrane; a graphite oxide layer, which is deposited on the PDDA layer; a monomolecular layer, which is self-assembled on a surface of the graphite oxide layer and is composed of a compound of Formula I. The method for manufacturing the composite film comprises a self-assembling step which includes placing and soaking a base membrane deposited with a graphite oxide layer in a solution of a compound of Formula I, and self-assembling the compound of Formula I on the graphite oxide layer.
Abstract:
The present disclosure provides a touch driving unit, including a shift register module configured to generate a triggering signal, a grating module configured to generate a control signal in accordance with the triggering signal and control a signal from an output module, an amplification module configured to amplify the control signal, and the output module configured to output a signal from a touch signal end or a signal from a common electrode signal end.
Abstract:
An array substrate and a manufacturing method thereof, and a display panel are provided. The array substrate comprises: a base substrate (1), including a display region and a non-display region; and a metal conductive layer, an insulating layer (3) located above the metal conductive layer and an auxiliary conductive layer located above the insulating layer (3), formed on the base substrate (1), sequentially, wherein the metal conductive layer includes a plurality of first conducting lines (2), and the auxiliary conductive layer includes a plurality of second conducting lines (4), each of the plurality of first conducting lines (2) corresponding to at least one of the plurality of second conducting lines (4), each of the plurality of second conducting lines (4) is electrically connected with the corresponding first conducting line (2) through a connecting structure (51, 52) in the insulating layer (3), and a vertical projection of the connecting structure (51, 52) is located in the non-display region. Embodiments of the present disclosure can realize a narrow-frame display panel and are easily implemented, thereby reducing difficulty in fabricating the narrow-frame display panel.
Abstract:
A shift register unit, a driving method thereof, a gate driving circuit and a display device, wherein the shift register unit includes a pull-up module, a first input module, a second input module, a pull-down control module and a pull-down module. By such a shift register unit, it can be avoided that a scan signal is outputted to the corresponding gate line during the non-output phase in error, improving the stability and reliability of the circuit.
Abstract:
The present invention provides a buffer unit for the touch-control driving circuit of the display device, the display device comprises a display panel, which includes gate lines, common electrode lines, pixel electrodes and a common electrode, the common electrode lines are used as touch-control scanning signal lines in the touch-control driving circuit, wherein the buffer unit comprises an input terminal connected to an output of a shift register unit in a gate driving circuit and an output terminal connected to a corresponding gate line, the buffer unit is used to adjust a voltage input to the gate line to a target voltage in a touch-control phase, and a difference between the target voltage and a voltage of the pixel electrode is smaller than a first value when a high level signal is applied to the touch-control scanning signal line.
Abstract:
There is provided a touch circuit, a touch panel and a display apparatus. In the touch circuit, an input module (01) is used for pulling up the potential of a first node (P1), a reset module (02) is used for pulling down the potential of the first node (P1), a pull-up module (03) is used for pulling up the potential of a control signal output terminal (OUT), a pull-down module (04) is used for pulling down potentials of the first node (P1) and the control signal output terminal (OUT), a touch signal output control module (05) is used for controlling a touch signal output terminal (TX) to choose to output a high-frequency signal (TH) or a common voltage signal (VCOM) so as to achieve the function of outputting a touch signal by the touch circuit.
Abstract:
A display substrate and a fabrication method thereof and a display device. The display substrate includes: a plurality of pixels disposed on a lower substrate; and a pixel defining layer disposed between adjacent pixels of the plurality of pixels, the pixel defining layer contacting with an upper substrate of the plurality of pixels, the pixel defining layer configured for defining each pixel and supporting a gap between the upper substrate and the lower substrate.
Abstract:
A color filter substrate, a manufacturing method thereof, a method for manufacturing spacers, and a display device are disclosed. The color filter substrate includes: a black matrix and a color filter layer. Areas provided with the black matrix include first areas and second areas; the color filter layer is provided with grooves; the grooves of the color filter layer correspond to the first areas; the color filter layer and the black matrix are overlapped with each other at the second areas; and an upper surface of the color filter substrate at the second areas is higher than the upper surface of the color filter substrate at the first areas.