Abstract:
An x-ray tube source is disclosed that allows differential phase shift, attenuation, and x-ray scattering features of an object to be acquired in a single exposure. Such multiplexed x-ray tube source includes multiple x-ray spot origins controlled in such a way that each slightly separated spot is temporally modulated “ON and OFF” at differing frequencies. In an x-ray interferometer system, such x-ray tube source forms multiple illumination beams of a single angular view of an object's feature but each with different interference fringe locations. A composite image can be acquired with a high frame-rate digital detector as a component element in such x-ray interferometer system. Such composite image can be subsequently de-multipexed and separately presented according to each spot-source illumination beam. Such isolated images of an object's feature, each having different fringe locations, allows for post-acquisition “fringe-mapping” analysis of the feature's full interaction with x-rays, including refraction, scattering, and absorption.
Abstract:
An X-ray generator including a cathode, an anode provided with two X-ray generation zones, a casing in which the cathode and anode are accommodated, two air cylinders for causing the anode to move, two linear guides for guiding the movement of the anode, and a bellows serving as a seal member. The air cylinders and the linear guides are provided at different positions on a surface orthogonal to a center axis of the bellows. The air cylinders and the linear guides are provided uniformly in relation to the center axis.
Abstract:
A high flux X-ray tube anode target assembly (101). The assembly includes a support shaft (107) connected to a pivot assembly (109). The assembly further includes a movable anode target (105) having a target surface (106) disposed at one end of the support shaft. The target surface includes a single radius of curvature. The radius of curvature extends from a pivot point (110). The assembly also includes a drive member (119) operably arranged with respect to the support shaft to provide motion to the anode target. The assembly is configured to maintain a substantially fixed distance between the pivot point and the target surface.
Abstract:
The present invention is characterized by supporting a stator to generate a magnetic field and an anode target by a dynamic pressure plain bearing using a liquid metal, and cooling at least the inside of the dynamic pressure plain bearing and an enclosure containing an anode target by circulating one kind of cooling medium, in a rotary X-ray tube apparatus which obtains X-rays by impinging an electron on an anode by rotating an anode target.
Abstract:
An X-ray apparatus includes a rotation-anode type X-ray tube which is configured such that a rotatable anode target and a cathode that is disposed to be opposed to the anode target are accommodated within a vacuum envelope, a stator which generates an induction electromagnetic field for rotating the anode target, a housing which accommodates and holds at least the rotation-anode type X-ray tube, a circulation path which is provided near at least a part of the rotation-anode type X-ray tube, and through which a water-based coolant is circulated, and a cooling unit including a circulation pump, which is provided at a position along the circulation path and forcibly feeds the water-based coolant, and a radiator which radiates heat of the water-based coolant, wherein an amount of dissolved oxygen at 25° C. in the water-based coolant is 5 mg/liter or less.
Abstract:
A valve is provided to fill a chamber for holding a rotation shaft of a rotating anode in an X-ray tube. The valve has a needle supported on a seat. The needle maintains the vacuum in the tube. A sleeve can engage in the valve. The sleeve is hollow and has a cavity. This cavity can be connected to the vacuum or to a bottle under vacuum filled with a lubricant liquid. The sleeve is used to handle the needle. The sleeve furthermore bears on a rim of the valve by an O-ring joint. This joint maintains the vacuum when the needle is raised and when the tube under vacuum is connected to the cavity of the sleeve.
Abstract:
An imaging tube assembly (11) for a computed tomography (CT) system (10) includes an insert (60) that has a vacuum chamber (72). An anode (58) resides within the vacuum chamber (72) and rotates on a shaft (66) via one or more bearing (70). In one embodiment, a seal (52) resides between the insert (60) and the shaft (66). The seal (52) prevents the passage of a gas (80) into the vacuum chamber (72). In another embodiment, a pressure transition chamber (104) is coupled to an insert (60″) and a shaft (66″). The pressure transition chamber (104) has an associated middle fluid pressure that is between an internal fluid pressure of the vacuum chamber (104) and an external fluid pressure of said insert (60″).
Abstract:
This invention relates to a microfocus X-ray tube having a heat-dissipation solid formed on the target adhesively. Specifically, the heat-dissipation solid defining an opening is formed on the target surface irradiated with an electron beam. Heat generated adjacent the target surface by impingement of an electron beam having passed through the opening is promptly distributed by heat conduction through the surface solid. The heat-dissipation solid contributes to lowering of a surface temperature of the target layer with which the electron beam collides, and a reduction of evaporation of a material forming the target, thereby extending an X-ray generating time.
Abstract:
A rotary bulb tube of an x-ray radiator is mounted for rotation in a housing, which is filled with a coolant and is connected to a shaft section, which in turn is connected by a coupling to a second shaft section extending to a motor for rotating the bulb tube. The coupling is designed to isolate the rotary bulb tube electrically from the motor and to isolate the bulb tube from motor vibrations.