摘要:
A surface emitting laser device includes a substrate, a lower reflector, an active layer, an upper reflector, and surface emitting lasers configured to emit light. A second phase adjustment layer, a contact layer, a first phase adjustment layer, and a wavelength adjustment layer are successively layered from the active layer side. The total optical thickness from the active layer side of the second phase adjustment layer to the midsection of the wavelength adjustment layer is approximately (2N+1)×λ/4, where λ represents a wavelength of light, and N represents a positive integer. The optical thickness from the active layer side of the second phase adjustment layer to the midsection of the contact layer is approximately Nλ/2. At least two of the surface emitting lasers have the wavelength adjustment layer arranged at different thicknesses and are configured to emit light with different wavelengths.
摘要:
A surface emitting laser element is disclosed. The surface emitting laser element includes a resonator structural body including an active layer, first and second semiconductor distributed Bragg reflectors which sandwich the resonator structural body, and a confinement structure which can confine an injection current and a lateral mode of oscillation light at the same time by being formed with selective oxidation of a layer to be selectively oxidized containing aluminum in the first semiconductor distributed Bragg reflector. A thickness of the layer to be selectively oxidized is 28 nm, and a temperature when an oscillation threshold current becomes a minimum value is approximately 17° C.
摘要:
A vertical microcavity having a layer structure perpendicular to a vertical axis z, includes a first reflector and a second reflector, each comprising one or more material layers; a confinement layer between the reflectors, wherein an electromagnetic wave can be substantially confined, the confinement layer having a body and a defect delimited by first and second surfaces, perpendicular to the vertical axis z; wherein one of the two surfaces is contiguous with the body, the other one contiguous with a layer of the first or second reflector, and wherein one of the two surfaces has a curved profile in at least a plane section perpendicular to the layer structure, the curved profile having a vertex, which defines a maximal thickness h0 of the defect between the first surface and the second surface in the plane section, the maximal thickness h0 being less than a thickness of the contiguous layer.
摘要:
Methods for fabricating an optical device that exhibits improved conduction and reflectivity, and minimized absorption. Steps include forming a plurality of mirror periods designed to reflect an optical field having peaks and nulls. The formation of a portion of the plurality of minor periods includes forming a first layer having a thickness of less than one-quarter wavelength of the optical field; forming a first compositional ramp on the first layer; and forming a second layer on the compositional ramp, the second layer having a different index of refraction than the first layer and having a thickness such that the nulls of the optical field occur within the second layer and not within the compositional ramp, and wherein forming the second layer further comprises heavily doping the second layer at a location of the nulls of the optical field.
摘要:
Methods for fabricating an optical device that exhibits improved conduction and reflectivity, and minimized absorption. Steps include forming a plurality of mirror periods designed to reflect an optical field having peaks and nulls. The formation of a portion of the plurality of minor periods includes forming a first layer having a thickness of less than one-quarter wavelength of the optical field; forming a first compositional ramp on the first layer; and forming a second layer on the compositional ramp, the second layer having a different index of refraction than the first layer and having a thickness such that the nulls of the optical field occur within the second layer and not within the compositional ramp, and wherein forming the second layer further comprises heavily doping the second layer at a location of the nulls of the optical field.
摘要:
A method of manufacturing a semiconductor device capable of largely increasing the yield and a semiconductor device manufactured by using the method is provided. After a semiconductor layer is formed on a substrate, as one group, a plurality of functional portions with at least one parameter value different from each other is formed in the semiconductor layer for every unit chip area. Then, a subject that is changed depending on the parameter value is measured and evaluated and after that, the substrate is divided for every chip area so that a functional portion corresponding with a given criterion as a result of the evaluation is not broken. Thereby, at least one functional portion corresponding with a given criterion can be formed by every chip area by appropriately adjusting each parameter value.
摘要:
A Vertical Cavity Surface Emitting Laser (VCSEL) is optimized for longer life of the VCSEL by controlling the distance of doped and undoped layers near an active region. In addition, the VCSEL optimized for reduced parasitic lateral current under an oxide of the VCSEL by forming a high Al confinement region and placing the oxide at a null in a standing optical wave. Further, the VCSEL is optimized to reduce resistance.
摘要:
A method of adjusting a power density in a laser device including a VCSEL array providing an increased power density at a high wall-plug efficiency in that the lateral design parameters are appropriately selected on the basis of a relationship that has been established for a specified vertical design, a corresponding process technology and specified operating conditions. Thus, the total output power, the power density, and the efficiency may be optimized independently from other design criteria and application requirements by tuning only the lateral size of the individual VCSEL elements and the pitch of nearest neighbors of the elements within the array. Hence, for a lateral size of less than 30 μm and a pitch of less than 80 μm, a highly efficient VCSEL array can be provided with a high power density, thereby optimizing manufacturing costs for the output power per chip area.
摘要:
An optically pumped semiconductor laser apparatus. The apparatus includes a vertical emitter which has a central waveguide and a quantum well structure which is arranged within the central waveguide and has at least one quantum layer. The apparatus also includes a pump radiation source, which optically pumps the quantum well structure and comprises at least one pump waveguide in which the pump radiation is guided. The width of the central waveguide is greater than the width of the pump waveguide, with the width of the central waveguide and the width of the pump waveguide being matched to one another such that the quantum well structure of the vertical emitter is pumped uniformly.
摘要:
The etched sidewalls of laterally oxidized VCSEL structures are coated with a dielectric film to inhibit oxidation of the DBR layers during the oxidation process. While oxidation of the DBR mirror layers is not completely eliminated, the number of DBR mirror layers that are oxidized is significantly reduced, thereby reducing the DBR oxide stress.