Abstract:
The present invention combines ionization modes produced by, for example, electrospray (ESI), atmospheric pressure chemical ionization (APCI), and thermospray for analysis of molecules. Specifically, this invention relates to the creation of a new source apparatus combining APCI and ESI which will interface with existing mass spectrometers, as well as the creation of new mass spectrometers where the present invention would be the ionization source. Furthermore, the present invention relates to an ionization source for a mass spectrometer which features an ion chamber defining an ion path, an electrospray probe for ionizing a sample using electrospray ionization, a corona discharge needle for ionizing a sample using atmospheric pressure chemical ionization, a power supply for applying an electrical potential to one of said electrospray probe and said corona discharge needle, and a solid state switch for directing the electrical potential from the power supply to one of the electrospray probe and said corona discharge needle.
Abstract:
The present invention provides an apparatus and method for use with a mass spectrometer. The multimode ionization source of the present invention provides one or more atmospheric pressure ionization sources (e.g., electrospray, atmospheric pressure chemical ionization and/or atmospheric pressure photoionization) for ionizing natural product and organic molecules. A method of producing ions using the multimode ionization source is also disclosed. The apparatus and method provide the advantages of the combined ion sources without the inherent disadvantages of the individual sources. In an embodiment, the multimode ionization source includes an infrared emitter enclosed in an inner chamber for drying a charged aerosol. ESI/APCI multimode sources may include a corona needle shield and/or an auxiliary electrode.
Abstract translation:本发明提供了一种与质谱仪一起使用的装置和方法。 本发明的多模电离源提供用于电离天然产物和有机分子的一种或多种大气压电离源(例如电喷雾,大气压化学电离和/或大气压光电离)。 还公开了使用多模电离源产生离子的方法。 该装置和方法提供了组合离子源的优点,而没有各个源的固有缺点。 在一个实施例中,多模式电离源包括封闭在内室中用于干燥带电气溶胶的红外发射器。 ESI / APCI多模式源可以包括电晕针护罩和/或辅助电极。
Abstract:
The present invention comprehends a compact and economical apparatus for producing high intensities of a wide variety of wanted positive and negative molecular and atomic ion beams that have been previously impossible to previously produce at useful intensities. In addition, the invention provides a substantial rejection of companion background ions that are frequently simultaneously emitted with the wanted ions. The principle underlying the present invention is resonance ionization-transfer where energy differences between resonant and non-resonant processes are exploited to enhance or attenuate particular charge-changing processes. This new source technique is relevant to the fields of Accelerator Mass Spectroscopy; Molecular Ion Implantation; Generation of Directed Neutral Beams; and Production of Electrons required for Ion Beam Neutralization within magnetic fields. An example having commercial importance is ionization of the decaborane molecule, B10H14 where an almost perfect ionization resonance match occurs between decaborane molecules and arsenic atoms.
Abstract translation:本发明包括一种紧凑且经济的装置,用于产生以前不可能以有用强度预先产生的各种各样的所需正,负分子和原子离子束的强度。 此外,本发明提供了与所需离子频繁同时发射的伴随背景离子的显着排除。 本发明的基本原理是谐振电离转移,其中利用共振和非共振过程之间的能量差异来增强或减弱特定的电荷变化过程。 这种新的源技术与加速器质谱技术相关; 分子离子注入 定向中性梁的生成 和磁场中离子束中和所需的电子的生产。 具有商业重要性的实例是十硼烷分子的电离,其中在十硼烷分子和砷原子之间发生几乎完美的电离谐振匹配的B 10 H 14 N 14。
Abstract:
A mass spectrometer having an ion source section capable of creating positive ions and negative ions at high efficiency. The ion source is comprised of an ion source section for creating ions of a sample gas, a mass spectrometric section for conducting mass separation of created ions, linear RF generating multipole electrodes, magnetic fields generation means, a sample gas introduction system, a reaction gas introduction system and an electron source in which the linear RF generating multipole electrodes generate linear RF multipole electric fields. A static magnetic fields is applied in parallel on the center axis where the linear RF multipole electric fields are zero. A sample gas and a reagent gas are introduced into the ion source section. Electrons are injected for creating reaction of the positive ions or negative ions.
Abstract:
In a method for obtaining an output ion current substantially comprised of only a single ionic species, ions formed in the ionization of a source gas in an ionization region (A) and/or ions extracted from the ionization region (A) are allowed to react in a region (A, B, C), in which is located a source gas, until substantially only one or several source ionic species are present, which do not react with the source gas. To a reaction region (C) located outside of the ionization region (A) and in which ions of the one or several source ionic species are present, a reactant gas, differing from the source gas, is supplied, which reacts with the ions of the one or several source ionic species, and the ions of the one or several source ionic species are substantially converted into the single ionic species forming the output ion current.
Abstract:
The invention relates to a method for assessing the state of organisms and natural products wherein one or more substances are determined in a gaseous mixture, determination being effected by a mass spectrometer wherein an ion beam acts on the sample of gaseous mixture in high vacuum in such a way that the test molecules are ionized with the aid of the internal energy of the ions of the ion beam, and the values obtained upon determination are evaluated for assessing the state.Further, the invention relates to a method for analyzing a gaseous mixture with one or more main components and one or more secondary components wherein at least one main component is determined in the concentration range greater than or equal to 0.1 percent by volume and one secondary component in the concentration range of less than or equal to 0.1 percent by volume by a mass spectrometer wherein an ion beam acts on the sample of gaseous mixture in high vacuum in such a way that the test molecules are ionized with the aid of the internal energy of the ions of the ion beam, and to an apparatus for analyzing a gaseous mixture comprising a mass spectrometer with a gas delivery system wherein a molecular beam is produced in an intermediate vacuum from the sample of gaseous mixture under analysis, a second molecular beam then being produced from said beam in high vacuum by means of a pressure gradient in a capillary and the test molecules of the second molecular beam ionized, the pressure of the intermediate vacuum being kept constant.
Abstract:
A method and apparatus for analyzing vapors generated from explosives in which vapors containing nitrogen monoxide and/or nitrogen dioxide are generated by decomposing explosives by increasing the temperature of the explosives, primary ions and neutral molecules are generated from air. The generated primary ions and the nitrogen monoxide and/or nitrogen dioxide contained in the generated vapors are allowed to react with each other in an area inhibited or prevented from being penetrated by the generated neutral molecules, and the nitrogen monoxide and/or nitrogen dioxide contained in the generated vapors is ionized. The ionized nitrogen monoxide and/or nitrogen dioxide is subjected to mass spectrometry, and an amount of the nitrogen monoxide and/or nitrogen dioxide contained in the generated vapors by decomposing the explosives is determined.
Abstract:
The subject invention pertains to a methods and devices for ionizing a sample material. The subject invention also relates to an ionization source and to a method of sampling gas-phase ions from a sample. An ionization source in accordance with the subject invention can be used in conjunction with mass spectrometry or other sampling techniques. The subject invention can utilize a means for desorbing gas-phase ions and neutral molecules from a sample and a means to generate reagent ions where the reagent ions ionize the desorbed neutral molecules so as to increase the population of gas-phase ions. The subject invention can incorporate laser radiation for desorbing gas-phase ions and neutral molecules from a sample. In a specific embodiment, the subject invention provides an ionization source that uses a pulsed laser for desorption, so as to produce a population of desorbed neutral molecules from a sample, as well as a number of gas-phase sample ions. In a further specific embodiment, the pulsed laser radiation can be adjusted such that neutral molecules are desorbed without the production of gas-phase sample ions by the laser radiation.
Abstract:
An atmospheric pressure ion source, e.g. for a mass spectrometer, that produces ions by atmospheric pressure photoionization (APPI). It includes a vaporizer, a photon source for photoionizing vapor molecules upon exit from the vaporizer, a passageway for transporting ions to, for example, a mass spectrometer system, and a means for directing the ions into the passageway. The center axis of the vaporizer and the center axis of the passageway form an angle that may be about 90 degrees. Included in the invention is a method for creating ions by atmospheric pressure photoionization along an axis and directing them into a passageway oriented at an angle to that axis.
Abstract:
This invention comprises an apparatus and method for generating sample ions from sample molecules in which a mixture of a sample and a matrix are vaporized by a laser beam and subsequently ionized by reagent corona ions. The decoupling of the vaporization and ionization steps allows each process to be separately optimized. The vaporization and ionization steps can be done in a sub-atmospheric pressure region. Alternatively, the vaporization and ionization steps can be done in a higher pressure region. In addition, the reagent corona ions can be generated in a vacuum chamber or a chamber at atmospheric pressure. Alternatively, the reagent ions can be generated in a sub-atmospheric region while the laser desorption occurs in an atmospheric region.