摘要:
An improved method for forming a capacitor. The method includes: providing a carrier with a channel therein; providing a metal foil with a valve metal with a first dielectric on a first face of the metal foil; securing the metal foil into the channel with the first dielectric away from a channel floor; inserting an insulative material between the metal foil and each side wall of the channel; forming a cathode layer on the first dielectric between the insulative material; forming a conductive layer on the cathode layer and in electrical contact with the carrier; lap cutting the carrier parallel to the metal foil such that the valve metal is exposed; and dice cutting to form singulated capacitors.
摘要:
High capacitance value capacitors are formed using bimetal foils of an aluminum layer attached to a copper layer. The copper side of a bimetallic copper/aluminum foil or a monometallic aluminum foil is temporarily protected using aluminum or other materials, to form a sandwich. The exposed aluminum is treated to increase the surface area of the aluminum by at least one order of magnitude, while not attacking any portion of the protected metal. When the sandwich is separated, the treated bimetal foil is formed into a capacitor, where the copper layer is one electrode of the capacitor and the treated aluminum layer is in intimate contact with a dielectric layer of the capacitor.
摘要:
A method for forming closed vias in a multilayer printed circuit board. A dielectric layer is laminated to one side of a central core having a metal layer on each side. A second dielectric layer is laminated to the other side of the central core. Closed vias in the central core have been formed by drilling partially through but not completely penetrating the central core, and then completing the via from the opposite side with a hole that is much smaller in diameter to form a pathway that penetrates completely through the central core from one side to another. The via is then plated with metal to substantially close the smaller hole. Approximately one half of the closed vias are situated such that the closed aperture faces one dielectric layer and a remainder of the closed vias are situated such that the closed aperture faces the other dielectric layer. Resin from one dielectric layer fills the cavities of approximately one half of the closed vias, and resin from the other dielectric layer fills the circular cavities of the remainder of the closed vias. The total amount of resin migrated from each of the dielectric layers into the closed via cavities is approximately equal.
摘要:
A high impedance surface (300) has a printed circuit board (302) with a first surface (314) and a second surface (316), and a continuous electrically conductive plate (319) disposed on the second surface (316) of the printed circuit board (302). A plurality of electrically conductive plates (318) is disposed on the first surface (314) of the printed circuit board (302), while a plurality of elements are also provided. Each element comprises at least one of (1) at least one multi-layer inductor (330, 331) electrically coupled between at least two of the electrically conductive plates (318) and embedded within the printed circuit board (302), and (2) at least one capacitor (320) electrically coupled between at least two of the electrically conductive plates (318). The capacitor (320) comprises at least one of (a) a dielectric material (328) disposed between adjacent electrically conductive plates, wherein the dielectric material (328) has a relative dielectric constant greater than 6, and (b) a mezzanine capacitor embedded within the printed circuit board (302).
摘要:
A method is for fabricating an embedded capacitance printed circuit board assembly (400, 1100). The embedded capacitance printed circuit board assembly includes two embedded capacitance structures (110). Each capacitance structure (110) includes a crystallized dielectric oxide layer (115) sandwiched between an outer electrode layer (120) and an inner electrode layer (125) in which the two inner electrode layers are electrically connected together. A rivet via (1315) and a stacked via (1110) formed from a button via (910) and a stacked blind via (1111) may be used to electrically connect the two inner electrode layers together. A spindle via (525) may be formed through the inner and outer layers. The multi-layer printed circuit board may be formed from a capacitive laminate (100) that includes two capacitance structures.
摘要:
A sequentially laminated printed circuit board having highly reliable vias can be fabricated by pattern plating flanges or via lands on a copper foil, laminating the foil to a prepreg so that the flanges are embedded into the surface of the prepreg, creating via holes in the laminate that are substantially concentric with the individual flanges, plating the via holes with copper, chemically or mechanically milling off a portion of the copper plating and optionally some of the copper foil to reduce the overall thickness of the laminate, and laminating a second and optionally a third prepreg to the laminate. The resulting printed circuit board has the flanges embedded in the surface of the laminate so that the inside wall of the flange is electrically and mechanically attached to the outside wall of the plated through hole barrel.
摘要:
A technique for fabricating a patterned resistor on a substrate produces a patterned resistor (101, 801, 1001, 1324, 1374) including two conductive end terminations (110, 810, 1010) on the substrate, a pattern of first resistive material (120, 815, 1015) having a first width (125) and a first sheet resistance, and a pattern of second resistive material (205, 820, 1020) having a second width (210) and a second sheet resistance that at least partially overlies the pattern of first resistive material. One of the first and second sheet resistances is a low sheet resistance and the other of the first and second resistances is a high sheet resistance. A ratio of the high sheet resistance to the low sheet resistance is at least ten to one. The pattern having the higher sheet resistance is substantially wider than the pattern having the low sheet resistance. The patterned resistor can be precision trimmed 1225.
摘要:
A printed circuit polymer thick film (PTF) resistor includes tolerance control material that substantially surrounds the resistor body and significantly improves the linearity of resistance vs. resistor length, and significantly reduces resistor-to-resistor and board-to-board fabrication variances. In one embodiment, the tolerance control material is the same metallic material as the printed circuit conductors, and is formed in two finger patterns on each side of the resistor body, each finger pattern connected to one terminal pad of the resistor. A layout cell is used for fabricating the PTF resistor. A method is used for fabricating the PTF resistor.
摘要:
In one embodiment, a peelable circuit board foil (200) has a metal support layer (205) and a conductive metal foil layer (210) bonded by an inorganic release material (215). The conductive metal foil layer has a an exposed surface (212) that is coated with a high temperature anti-oxidant barrier (220) and has a roughness less than 0.05 microns RMS. In a second embodiment, the peelable printed circuit foil (200) has a crystallized dielectric oxide layer (405) disposed on the exposed surface of the conductive metal foil layer and an electrode layer (415) disposed on the crystallized dielectric oxide layer, forming a dielectric peelable circuit board foil (400) that may be adhered to a layer of a flexible or rigid circuit board, after which the metal support layer can be peeled away, leaving a capacitive structure including the metal foil layer, the crystallized dielectric oxide layer, and the electrode layer.
摘要:
An exemplary system and method for providing an acoustic plate wave apparatus is disclosed as comprising inter alia: a monocrystalline silicon substrate (200); an amorphous oxide material (220); a monocrystalline perovskite oxide material (230); a monocrystalline piezoelectric material (240); and a flexural plate wave component (250, 270) having an input interdigitated transducer (270), an output interdigitated transducer (250) and an optional support layer (260). Deposition or removal of material on or from an absorptive thin film sensor surface (210), or changes in the mechanical properties of the thin film (210) in contact with various chemical species, or changes in the electrical characteristics of a solvent solution exposed to the thin film (210) generally operate to produce measurable perturbations in the vector quantities (e.g., velocity, etc.) and scalar quantities (e.g., attenuation, etc.) of the acoustic plate modes.