Abstract:
A system and method for generating a composite synchronization sequence in a communication system. In one embodiment, the apparatus is configured to provide a first synchronization sequence and a second synchronization sequence in a first domain, transform the first synchronization sequence and the second synchronization sequence into a second domain, and extend the first synchronization sequence and the second synchronization sequence in the second domain to a common length to produce an extended first synchronization sequence and an extended second synchronization sequence. The apparatus is also configured to transform the extended first synchronization sequence and the extended second synchronization sequence into the first domain, and multiply elementwise the extended first synchronization sequence by the extended second synchronization sequence in the first domain to obtain a composite synchronization sequence.
Abstract:
A wireless communication network includes an assistant serving access node (415) and a principal serving access node (410). The principal serving access node (410) receives one or more measurement reports. The principal serving access node (410) communicates an assistance request to communicate one or more data packets. The assistant serving access node (415) buffers the one or more data packets before receiving the assistance request and communicates the one or more data packets to the user equipment (110).
Abstract:
Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
Abstract:
A wireless device detects a synchronization signal by obtaining (210), from a received signal, a sequence of samples, and calculating (220) a differentially decoded sequence from the obtained sequence of samples. The wireless device correlates (230) the calculated differentially decoded sequence with a first reference sequence corresponding to the synchronization signal, at each of a plurality of time offsets, and identifies which of the plurality of time offsets results in a largest correlation result. In response to determining (240) that the largest correlation result does not meet a predetermined reliability criterion, the wireless device correlates (250) the obtained sequence of samples with a second reference sequence, at each of a plurality of time and frequency offsets, and identifies which combination of time offset and frequency offset results in a largest correlation result. The first reference sequence comprises a differentially decoded version of the second reference sequence.
Abstract:
Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
Abstract:
Methods, apparatuses, and computer program products for communicating channel assessment, channel information, and routing information between a spectrum controller (210) and radio resource manager (220). A spectrum controller obtains channel information and classifies a number of radio channels of a network as available, partially available, or unavailable. The availability information is sent to a radio resource manager, which can use the information to determine a routing solution. The radio resource manager can request that the spectrum controller perform an access negotiation for a partially available channel. Based on the result of the negotiation, the radio resource manager may re-route information in the network.
Abstract:
A method for performing a beamformed transmission and/or reception in a wireless communication using an antenna array comprising a first sub-array of first antenna elements each having a first polarization and a second sub-array of second antenna elements each having a second polarization that is orthogonal to the first polarization is provided. The method comprises obtaining a first weight vector for the first sub-array and a second weight vector for the second sub-array. The first weight vector and the second weight vector optimize a utility function. The utility function comprises a first term depending on a first function of the first weight vector and on a second function of the second weight vector. The utility function further comprises a second term depending on either one of the first function and the second function. Performing the beamformed transmission using the obtained first weight vector and the second weight vector.
Abstract:
Systems and methods are disclosed for frequency hopping schemes that are compatible with joint channel estimation. In one embodiment, a method implemented in a User Equipment (UE) comprises determining a value of a hopping index for a first set of N consecutive slots, wherein the N is an integer greater than 1, and after the N consecutive slots, incrementing the value of the hopping index for a second set of N consecutive slots. The method further comprises, for an uplink slot within the second set of N consecutive slots, determining a set of physical resource blocks (PRBs) in which to transmit a physical channel from a set of frequency offsets according to the value of the hopping index for the second set of slots and transmitting the physical uplink channel in the selected set of PRBs in the uplink slot.
Abstract:
There is disclosed a method of operating a network node (100) in a radio access network, the method comprising detecting Physical Random Access CHannel, PRACH, transmission from a user equipment (10), wherein the PRACH transmission covers a plurality of time intervals, wherein detecting comprises associating different weights to different time intervals. The disclosure also pertains to related devices and methods.
Abstract:
Various embodiments of the present disclosure provide methods and apparatuses for determining radio network temporary identifier (RNTI) in a two-step random access procedure. A method of a terminal device, comprising: determining a request message for random access, wherein the request message comprises a preamble and a physical uplink shared channel, PUSCH, message and the PUSCH message is determined based on a first radio network temporary identity, RNTI; transmitting the request message; and obtaining a response message for random access based on a second RNTI, wherein the first RNTI and the second RNTI are the same or different.