Abstract:
A flat panel display device including a substrate including first and second regions; an active layer on the first region of the substrate including a semiconductor material; a lower electrode on the second region of the substrate including the semiconductor material; a first insulating layer on the substrate including the active layer and the lower electrode thereon; a gate electrode on the first insulating layer overlying the active layer and including a first conductive layer pattern and a second conductive layer pattern; an upper electrode on the first insulating layer overlying the lower electrode and including the first conductive layer pattern and the second conductive layer pattern; a second insulating layer on the gate electrode and the upper electrode exposing portions of the active layer and portions of the upper electrode; and a source electrode and a drain electrode connected to the exposed portions of the active layer.
Abstract:
A flat panel display device and a method of manufacturing the flat panel display device are disclosed. In one embodiment, the flat panel display device includes: i) a first substrate, ii) an active layer formed over the first substrate, wherein the active layer comprises a source region, a drain region, and a channel region, iii) a gate insulating layer formed on the active layer, iv) a gate electrode formed on the gate insulating layer and over the channel region of the active layer and v) a first interlayer insulating film formed on the gate insulating layer and the gate electrode. The device may further includes 1) a source electrode and a drain electrode electrically connected to the source region and the drain region of the active layer, respectively, through a contact hole, wherein the contact hole is formed in the first interlayer insulating film and the gate insulating layer, 2) a second interlayer insulating film interposed substantially only between i) the first interlayer insulating film and ii) the source electrode and the drain electrode, 3) a passivation layer formed on the first interlayer insulating film and the source electrode and the drain electrode and 4) a pixel electrode electrically connected to the source electrode or the drain electrode through a via-hole formed in the passivation layer.
Abstract:
An organic light emitting display apparatus and a method of manufacturing the organic light emitting display apparatus, whereby the manufacturing process is simplified and the electric characteristics of the organic light emitting display apparatus are improved. The organic light emitting display apparatus includes: a gate electrode that includes a first conductive layer including ITO, a second conductive layer on the first conductive layer, a third conductive layer on the second conductive layer and including ITO, and a fourth conductive layer on the third conductive layer and including IZO or AZO; and a pixel electrode formed in the same layer level as the gate electrode and including a first electrode layer that includes ITO, a second electrode layer on the first electrode layer, a third electrode layer on the second electrode layer and including ITO, and a fourth electrode layer on the third electrode layer and including IZO or AZO.
Abstract:
An organic light emitting display having an active layer of a thin film transistor formed on a substrate, a first conductive layer formed at an edge of the active layer, a first insulation layer formed on the substrate and the first conductive layer, a second conductive layer corresponding to a central area of the active layer formed on the first insulation layer, a fanout lower electrode separated a predetermined distance from the second conductive layer, a pixel electrode, a third conductive layer formed on the second conductive layer, a fanout upper electrode formed on the fanout lower electrode, a second insulation layer formed on the third conductive layer, the fanout upper electrode, and the pixel electrode, and source and drain electrodes contacting the pixel electrode and formed on the second insulation layer.
Abstract:
The present invention relates to an organic light emitting device and a manufacturing method thereof. A method of manufacturing an organic light emitting device according to an exemplary embodiment of the present invention includes: respectively forming first, second, and third driving transistors in a first region, a second region, and a third region on a substrate; forming an insulating layer on the first to third driving transistors; respectively forming first, second, and third pixel electrodes on the insulating layer, the first, second, and third pixel electrodes being formed in the first, second, and third regions, respectively; forming an auxiliary electrode on a side surface of each of the first, second, and third pixel electrodes; forming an organic light emitting member on the first to third pixel electrodes; and forming a common electrode on the organic light emitting member.
Abstract:
A thin film transistor, a display device including the same, and a method of manufacturing the display device, the thin film transistor including a substrate; a gate electrode on the substrate; a gate insulating layer on the gate electrode; a semiconductor layer on the gate insulating layer; and source/drain electrodes electrically connected with the semiconductor layer, wherein the gate electrode has a thickness of about 500 Å to about 1500 Å and the gate insulating layer has a thickness of about 1600 Å to about 2500 Å.
Abstract:
Making an OLED display, includes forming a first storage plate and a gate insulating layer covering the first storage plate on a substrate; sequentially forming a second storage plate covering the first storage plate and a capacitor intermediate on the gate insulating layer; forming a first doping region by injecting an impurity to a part that is not covered by the capacitor intermediate in the first storage plate; forming an interlayer insulating layer having a capacitor opening exposing the capacitor intermediate, and a plurality of erosion preventing layers on an edge of the capacitor intermediate toward the first doping region in the capacitor opening; removing the capacitor intermediate including the erosion preventing layer and a lower region of the erosion preventing layer, and injecting an impurity in the first storage plate through the second storage plate to form a second doping region contacting the first doping region.
Abstract:
A method of manufacturing an organic light-emitting display device includes forming a silicon layer and a gate insulating film over a substrate having a transistor region and a capacitor region; forming a halftone photoresist over the substrate; patterning the silicon layer and the gate insulating film; forming a residual photoresist by subjecting the halftone photoresist to an ashing process to leave part of the halftone photoresist over the transistor region; and doping at least a portion of the silicon layer with impurities by applying the impurities over an entire region of the substrate.
Abstract:
An organic light emitting diode display includes a substrate main body, a polysilicon semiconductor layer on the substrate main body, a gate insulating layer covering the semiconductor layer, and a gate electrode and a pixel electrode on the gate insulating layer, the gate electrode and the pixel electrode each including a transparent conductive layer portion with a gate metal layer portion on the transparent conductive layer portion, and the pixel electrode including a light emitting area having the transparent conductive layer portion and a non-light emitting area having both the transparent conductive layer portion and the gate metal layer portion.
Abstract:
A thin film transistor (TFT) and a method of fabricating the same are disclosed. The TFT includes a substrate, a gate electrode disposed over the substrate, a gate insulating layer disposed over the gate electrode, a semiconductor layer disposed over the gate insulating layer and including a polycrystalline silicon (poly-Si) layer, an ohmic contact layer disposed over a predetermined region of the semiconductor layer, an insulating interlayer disposed over substantially an entire surface of the substrate including the ohmic contact layer, and source and drain electrodes electrically connected to the ohmic contact layer through contact holes formed in the interlayer insulating layer. A barrier layer is interposed between the semiconductor layer and the ohmic contact layer. Thus, when an off-current of a bottom-gate-type TFT is controlled, degradation of characteristics due to a leakage current may be prevented using a simple process.