Abstract:
Methods, systems, and devices for wireless communications are described in which a receiving device, such as a base station or user equipment (UE), may receive an input signal that is modulated according to a probabilistic amplitude shaping (PAS) modulation technique. The receiving device may determine an associated channel noise estimate and may scale the input signal and the channel noise estimate based on a probability distribution parameter that is associated with the PAS modulation. The receiving device may demap the modulation constellation of the input signal based on the scaled input signal and the scaled channel noise estimate and provide one or more bits associated with the PAS modulated constellation. The probability distribution parameter may be estimated at the receiving device, or the transmitting device may provide the probability distribution parameter to the receiving device.
Abstract:
Methods, systems, and devices for wireless communication are described to support replacing values of one or more information bit vectors with one or more corresponding sets of parity bits. A first wireless device may replace an information bit vector with a parity bit vector, using a set of information bits of the information bit vector and based on a parity check matrix, which may result in generating the set of information bits at an information bit vector corresponding to a parity bit column of the parity check matrix, during encoding. The first wireless device may perform a transmission to a second wireless device, which may receive the transmission, decode the set of information bits to the information bit vector corresponding to the parity bit column. The second wireless device may replace other bit estimates of a vector corresponding to an information bit column with the set of information bits.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for compactly describing lifted low-density parity-check (LDPC) codes. A method by a transmitting device generally includes selecting a first lifting size value and a first set of lifting values; generating a first lifted LDPC code by applying the first set of lifting values to interconnect edges in copies of a parity check matrix (PCM) having a first number of variable nodes and a second number of check nodes; determining a second set of lifting values for generating a second lifted LDPC code for a second lifting size value based on the first lifted PCM and the first set of lifting values; encoding a set of information bits based the first lifted LDPC code or the second lifted LDPC code to produce a code word; and transmitting the code word.
Abstract:
Mobile devices are used as temporary location anchor points, e.g., to supplement fixed location permanent location anchor points, in a wireless communications system in which mobile device locations are determined. A mobile device receives a command or request to operate as a location anchor point. In some embodiments, the command includes time information indicating the amount of time the mobile device is to operate as a location anchor point. In some embodiments, a mobile device operating as a location anchor point reports a received signal strength measurement along with information identifying the device from which the signal was received to a network element, e.g., a location server node. In some embodiments, a mobile device operating as a location anchor point broadcasts a signal providing location information. The mobile device receives compensation for operating as a location anchor point. Compensation may be monetary, services, or benefits provided by the network.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for puncturing of structured low-density parity-check (LDPC) codes. Certain aspects of the present disclosure generally relate to methods and apparatus for a high-performance, flexible, and compact LDPC code. Certain aspects can enable LDPC code designs to support large ranges of rates, blocklengths, and granularity, while being capable of fine incremental redundancy hybrid automatic repeat request (IR-HARQ) extension while maintaining good floor performance, a high-level of parallelism to deliver high throughout performance, and a low description complexity.
Abstract:
Certain aspects of the present disclosure generally relate to methods and apparatus for decoding low density parity check (LDPC) codes, and more particularly to non-linear log-likelihood ratio quantization techniques for low-density parity-check (LDPC) decoder architecture.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for puncturing of structured low-density parity-check (LDPC) codes. Certain aspects of the present disclosure generally relate to methods and apparatus for a high-performance, flexible, and compact LDPC code. Certain aspects can enable LDPC code designs to support large ranges of rates, blocklengths, and granularity, while being capable of fine incremental redundancy hybrid automatic repeat request (IR-HARQ) extension while maintaining good floor performance, a high-level of parallelism to deliver high throughout performance, and a low description complexity.
Abstract:
Certain aspects of the present disclosure relate to techniques and apparatus for improving decoding latency and performance of Polar codes. An exemplary method generally includes generating a codeword by encoding information bits using a first code of length K to obtain bits for transmission via K channels, wherein the first code comprises a polar code, further encoding the bits in each of the K channels using a second code of length M, and transmitting the codeword.
Abstract:
A method, an apparatus, and a computer program product for communication are provided. The apparatus obtains a message for communication using visible light communication (VLC) through a light emitting diode (LED) luminary device and formats the message using a synchronization signal followed by one or more data signals. The synchronization signal and/or the one or more data signals are modulated using a Frequency Shift Keying (FSK) modulation scheme. The apparatus further receives a dimming level value associated with a brightness of light to be emitted from the LED luminary device, generates a waveform with frequencies based on the formatted message and a duty cycle for the LED luminary device based on the dimming level value, and sends the generated waveform to the LED luminary device for communication using VLC.
Abstract:
Provided are apparatus and methods for ranging between a plurality of wireless devices. An exemplary method includes, at a first wireless device, transmitting a primary portion symbol comprising a first packet and transmitting a secondary portion symbol. The secondary portion symbol is transmitted simultaneously at a lower transmit power than the primary portion symbol, and the secondary portion symbol comprises a second packet identical to the first packet. The primary portion symbol can be transmitted in a first channel having a substantially 20 MHZ bandwidth and the secondary portion can be transmitted in a second channel having a substantially 20 MHZ bandwidth. The first and second channels are substantially adjacent in frequency. After transmitting the primary portion symbol, for example, a high-throughput long-training-field symbol or a very-high-throughput long-training-field symbol can be repetitively transmitted. This exemplary method enhances time-of-arrival estimation accuracy, minimizes decoding bottlenecking, and maximizes wireless device range.