Abstract:
Certain aspects of the present disclosure provide techniques for indicating capability of a user equipment (UE) to support multiple sounding reference signals (SRSs) with a single subframe, with at least one of frequency hopping, different bandwidths, or antenna switching for the multiple SRSs in the same subframe.
Abstract:
Disclosed are techniques for transmitting and receiving an extended narrowband positioning reference signal (NPRS) sequence. In an aspect, a base station generates the extended NPRS sequence and transmits, to at least one user equipment (UE) over a wireless narrowband channel, the extended NPRS sequence. In an aspect, a UE receives, over the wireless narrowband channel, an NPRS of a first subset of the extended NPRS sequence and measures the NPRS of the first subset of the extended PRS sequence. In an aspect, the extended NPRS sequence may be a function of a plurality of slot numbers of a plurality of slots of a plurality of sequential radio frames and a plurality of symbol indexes of a plurality of symbols of a single physical resource block.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for reporting aperiodic channel quality indicator (A-CQI) in a new Secondary Cell (SCell) state of Long Term Evolution (LTE) carrier aggregation. A User Equipment (UE) receives a request for reporting A-CQI relating to a Scell configured for the UE when the UE is in a first state corresponding to the Scell, the first state designed for a reduced SCell activation latency and to result in the UE using lower power as compared to when the UE is in a second state. The UE, in response to the request, reports the A-CQI for the Scell in accordance with a first A-CQI reporting configuration for the first state which is different from a second A-CQI reporting configuration for the second state.
Abstract:
In an aspect, a method of wireless communication includes receiving, by a user equipment (UE), downlink control information (DCI) having a resource allocation of allocated physical resource blocks (PRBs). The method additionally includes employing at least one of a) a wideband decoder, b) a wideband channel estimator, c) a bandwidth-specific decoder, or d) a bandwidth-specific channel estimator for wireless communications based at least on a feature of the resource allocation in the DCI. In other aspects a UE transmits, to a base station, an indication of UE capabilities regarding support of wideband physical resource group (PRG) for various transmission time interval (TTI) durations.
Abstract:
To support very high QAM rates, a user equipment (UE) needs extremely good signal-to-noise ratio (SNR). Using a receiver configuration that improves SNR comes at the expense of higher power consumption. However, consuming higher power to support very high QAM rates when poor channel conditions are present is a waste of power. By correlating the modulation and coding scheme used by the UE with the UE channel quality estimate, the UE can modify the receiver configuration to improve SNR only when channel conditions support very high QAM rates.
Abstract:
In a wireless network, a base station (BS) may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). The synchronization signals may be used by user equipments (UEs) for cell detection and acquisition. A typical searching operation may involve first locating the PSS sequences transmitted by neighboring BSs, followed by SSS detection. Described further herein are algorithms that result in the detection of the PSS and the SSS from a BS. A method for detecting a BS generally includes sampling a received signal from receiver antennas to obtain a sampled sequence, analyzing the sampled sequence to detect a PSS in a current half-frame (HF), calculating signal-to-noise ratio (SNR) metrics based on the detected PSS, combining the calculated SNR metrics with SNR metrics from previous HFs, analyzing the combined SNR metrics to obtain timing information, and analyzing the sampled sequence using the timing information to detect a SSS.
Abstract:
Certain aspects of the present disclosure provide ordering techniques for a Successive Interference Cancellation (SIC) receiver which may be used to robustly choose a correct stream for first decode under varying data rates, SNR and mobile propagation conditions in Multiple Input Multiple Output (MIMO) systems. The SIC ordering techniques discussed in the disclosure include SNR and/or Rate based information theoretic approach. For example, the SIC receiver may evaluate an SNR based or RATE-based information theoretic metric for the MIMO streams and choose one stream with a higher value of the metric for decoding first. A speculative single code block based approach is may also be used for selecting a stream for first decode, by leveraging the presence of per code block Cyclic Redundancy Check (CRC) and the lack of time diversity in LTE systems.
Abstract:
Certain aspects of the present disclosure provide ordering techniques for a Successive Interference Cancellation (SIC) receiver which may be used to robustly choose a correct stream for first decode under varying data rates, SNR and mobile propagation conditions in Multiple Input Multiple Output (MIMO) systems. The SIC ordering techniques discussed in the disclosure include SNR and/or Rate based information theoretic approach. For example, the SIC receiver may evaluate an SNR based or RATE-based information theoretic metric for the MIMO streams and choose one stream with a higher value of the metric for decoding first. A speculative single code block based approach is may also be used for selecting a stream for first decode, by leveraging the presence of per code block Cyclic Redundancy Check (CRC) and the lack of time diversity in LTE systems.
Abstract:
Methods and apparatus for determining a reference sequence and timing based on normalized correlations are described. One example method generally includes receiving, at a first antenna of an apparatus, a first signal comprising a reference sequence; receiving, at a second antenna of the apparatus, a second signal comprising the same reference sequence; sampling the first and second signals to form first and second signal sequences; correlating the first and second signal sequences with each of one or more candidate sequences for the reference sequence using normalization; and determining the reference sequence and timing for the first and second signals based on the normalized correlations.
Abstract:
Methods and apparatus for computing measurement metrics in a wireless communications network are provided. One example method generally includes obtaining a channel impulse response (CIR) from one or more reference signals (RSs) transmitted from one or more antennas of a base station (BS); calculating an absolute square per element of the CIR to generate channel energy response (CER) elements; calculating a threshold value based on a noise variance estimated from a portion of the CER elements; selecting CER elements that exceed the threshold value; and computing a reference signal received power (RSRP) value based on the selected CER elements.