Abstract:
Methods, systems, and devices are provided that may address problems to enabling a user equipment (UE) in connected mode on a normal bandwidth cell to make inter-frequency measurements on another normal bandwidth cell and a flexible bandwidth cell. Some embodiment utilize a set of compressed mode gap configurations for measuring both normal bandwidth and flexible bandwidth inter-frequency cells with the following modification for flexible bandwidth cells: reducing the coherent length used by the UE; using the same cell search parameters at the UE but modifying the compressed mode gap parameters to accommodate both normal bandwidth and flexible bandwidth cell search; and/or maintaining the compressed mode gap parameters but reducing the search window size during cell search coherent accumulation. Some embodiments may configure separate compressed mode measurements configuration for normal bandwidth and flexible bandwidth measurements.
Abstract:
Methods, systems, and devices for facilitating mobility between flexible bandwidth systems and other bandwidth systems are provided. These tools and techniques that provide mobility between different bandwidth systems may facilitate supporting circuit-switched (CS) services, such as CS voice services. Some embodiments provide for determining flexible bandwidth capable devices, such as user equipment. Some embodiments involve core network redirection where a core network may direct the handling of circuit-switched services when a flexible bandwidth system does not support the CS services. Some examples provide for radio access network determined handling of CS services when a flexible bandwidth system may not support the CS services. Some embodiments provide for transitioning to a flexible bandwidth system. Some embodiments provide for transitioning from flexible bandwidth systems to non-flexible bandwidth systems that have no support for some or all CS services, other flexible bandwidth systems, and/or systems that natively support CS voice services.
Abstract:
Apparatus and methods are disclosed that provide various incentive schemes for owners of low-power base stations to allow others nearby to use their base station, enabling offloading of some users from a nearby macrocell, thus helping improve overall network performance. For example, a “win-win” scenario might exist when a sharing opportunity at a low-power base station overlaps with a sharing opportunity at the neighboring macrocell. During this overlap, when the low-power base station provides access to its air interface to one or more UEs outside of a set of UEs associated with the low-power base station, an incentive credit may be received. Incentive credits can take various forms, and in some examples, may be in an amount that is a function of an amount of contribution to the network resulting from the provision of access to the air interface.
Abstract:
An allocation technique is operable to allocate communication resources in multi-hop networks under the joint consideration of communication requirements and fairness. Embodiments operate to provide allocation of time slot resources in TDMA based multi-hop wireless networks under the joint consideration of QoS and fairness. Embodiments operate with respect to information regarding maximal common slot set flow contention. An iterative process is applied with respect to the information regarding maximal common slot set flow contention to allocate communication resources providing a balance between meeting communication requirements and fairness. According to embodiments, an inter-graph process iteratively selects a maximal common slot set for which resource allocation with respect to various flows is to be performed and an intra-graph process assigns communication resources in the maximal common slot set providing a balancing between meeting communication requirements (e.g., QoS) and providing fairness. Other aspects, embodiments, and features are also claim and described.
Abstract:
Systems and techniques are described for identifying and/or classifying capabilities associated with a wireless device. In some aspects, a process of the disclosed technology can include steps for receiving a first message comprising V2X capability information associated with a first wireless device, and transmitting via the at least one transceiver, a second message to the first wireless device, wherein the second message is associated with a periodicity based on the V2X capability information associated with the first wireless device.
Abstract:
Apparatus, methods, and computer-readable media for facilitating autonomous synchronization are disclosed herein. For example, a UE may be configured to perform an initial synchronization directly to PSCCH and PSSCH when other synchronization sources, such as GNSS, a base station, and/or SLSS, are unavailable. An example method for wireless communication at a user equipment includes receiving a PSCCH. The example method also includes performing an initial synchronization based on the PSCCH. In some examples, the method may also include receiving a PSSCH, and determining a logical subframe number modulo 10 based on the PSSCH. The logical subframe number modulo 10 may correspond to a sequence seed.
Abstract:
A communication device mounted on a vehicle, e.g., On-Board Unit (OBU), communicates collision related information to other road entities, e.g., other vehicles or roadside units (RSUs) or a server, after a collision is detected. The OBU may temporarily store basic safety messages (BSMs) (and optionally sensor data) for a predesignated number of seconds before discarding the BSMs (and optionally sensor data) on a continuing basis. When a collision is detected, the OBU sends a report, e.g., to a server, with the stored BSMs (and optionally sensor data) to a server. After a collision detection, the OBU may send a request to other vehicles to upload relevant collision related information. Additionally, if a first vehicle detects the collision of a second vehicle, the first vehicle may communicate collision related information to other entities and a server.
Abstract:
This disclosure provides systems, methods, and devices for wireless communication that support enhanced Basic Safety Message (BSM) reporting. In a first aspect, a method of wireless communication includes receiving, by a wireless communication device, a C-V2X message from another wireless communication device; and transmitting, by the wireless communication device, a safety message including path history information responsive to determining a path history information trigger condition is satisfied based on the C-V2X message. In a second aspect, a method of wireless communication includes receiving, by a wireless communication device, a C-V2X message from another wireless communication device; and transmitting, by the wireless communication device, a safety message including certificate information responsive to determining a certificate information trigger condition is satisfied based on the C-V2X message. Other aspects and features are also claimed and described.
Abstract:
A configuration for virtual sensing via sensor sharing for C-V2X scheduling. The apparatus receives, from a first wireless device, a message indicating a threat entity within a threat zone. The threat entity transmits data that interferes with transmission of BSMs. The apparatus determines a candidate resource of a set of candidate resources on which to transmit a BSM based at least in part on the message indicating information related to the threat entity from the first wireless device. The apparatus transmits, to at least a third wireless device, the BSM on a determined candidate resource.
Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.