Abstract:
Systems, methods, and devices providing a framework which reduces the amount of switching required by single transceiver hardware chain mobile devices operating multiple cellular technology and/or service stacks. The various embodiments enable two or more service stacks on the mobile device of various cellular technologies (e.g., 3GPP GSM, UMTS, LTE, WCDMA, etc), to share information, such as network measurements. The various embodiments may also enable one service stack to perform procedures for and provide information to another service stack.
Abstract:
A method for wireless communications is described. The method includes beginning a voice call using a voice services over adaptive multi-user channels on one slot receiver. Pilot signal knowledge is obtained. Interferers knowledge is also obtained. Error metrics are computed using the pilot signal knowledge and the interferers knowledge. The method further includes selecting between the voice services over adaptive multi-user channels on one slot receiver and a legacy receiver for the voice call based on the error metrics. Other aspects, embodiments and features are also claimed and described.
Abstract:
Access terminals are adapted to receive and transmit data during one or more frames in a multiframe. Power measurements for a neighboring cell can be scheduled during one or more frames not intended for power measurements. In some examples, the one or more frames not intended for power measurements can include an Idle frame and/or a Packet Timing Advance Control Channel (PTCCH) frame in a 52-frame multiframe structure, as well as an Idle frame and/or a Slow Associated Control Channel (SACCH) frame in a 26-frame multiframe structure. Some access terminals may be adapted for facilitating multiple subscriptions, and may operate at least substantially simultaneously in a Connected mode subscription and an Idle mode subscription. In such instances, a neighboring cell for which power measurements are performed may be associated with the Connected mode subscription and/or the Idle mode subscription. Other aspects, embodiments, and features are also claimed and described.
Abstract:
In some examples, a method and apparatus for wireless communication are disclosed. A wireless user equipment (UE) may receive an over-the-air tone pilot and apply the received pilot to a mixer. The mixer may mix the pilot with a local tone to generate a baseband signal. Here, the UE may determine an estimate of one or more parameters corresponding to a residual side band (RSB) in the baseband signal resulting from the mixer, and may accordingly apply the estimated one or more parameters to compensate for the RSB. The estimated RSB parameters may be refreshed online, by taking samples of the over-the-air tone pilot at a suitable refresh rate.
Abstract:
Aspects of the present disclosure provides a wireless communication apparatus configured to handle adjacent-channel interference (ACI) and spur. The apparatus receives a signal utilizing a communication interface. The apparatus is configured to perform a single discrete Fourier transform (DFT) on the signal to generate frequency domain data. The apparatus is further configured to determine respective energy of a plurality of adjacent channels of the signal utilizing the frequency domain data. The apparatus is further configured to determine one or more potential interfering channels among the adjacent channels, wherein each of the potential interfering channels has an energy greater than a qualifying threshold. The apparatus is further configured to identify one or more dominant interfering channels from among the potential interfering channels. The apparatus is further configured to detect ACI based on the one or more dominant interfering channels.
Abstract:
Embodiments are provided herein for reducing neighbor cell monitoring by a mobile communication device that may include measuring a channel condition of the cell serving the idle network subscription, determining whether the measured channel condition of the cell serving the idle network subscription satisfies a threshold value, and in response to determining that the measured channel condition of the cell serving the idle network subscription satisfies the threshold value, reducing a frequency at which neighbor cells associated with the idle network subscription are monitored and monitoring the neighbor cells associated with the idle network subscription according to the reduced frequency.
Abstract:
Embodiments of the present invention include devices, systems and methods for optimized camping on a cell. One method can include beginning a power scan of a range of radio-frequency channel numbers as part of an acquisition. Power can be measured for a first set of radio-frequency channel numbers at a time using adjacent channel interference detection. An average power can be computed for each radio-frequency channel number once the range has been scanned a predetermined number of times. Other aspects, embodiments and features are also claimed and described.
Abstract:
Aspects of the disclosure relate to wireless communication in connection with one or more devices, such as a mobile station (MS). A first burst of a multi-burst page is received from a paging channel. A correlation between at least a portion of the first burst and each of a plurality of predetermined bit patterns corresponding to a non-NULL page destined for the MS is determined. If the correlation is greater than a threshold, a second burst of the page is read and early decoding of the page is performed. Other aspects, embodiments, and features are also claimed and described.
Abstract:
A method for performing cell reselection by a wireless communication device is described. The method includes monitoring one or more neighbor cells of a same radio access technology as a serving cell while camped on the serving cell. The method also includes determining that reselection criteria is met for a target cell. The method further includes starting a reselection timer for the target cell. The method additionally includes determining whether to perform reselection to the target cell based on a target cell signal to noise ratio (SNR) and a serving cell SNR.
Abstract:
Access terminals are adapted to determine a tone location even when the tone is asymmetric. According to one example, an access terminal can obtain a plurality of samples for a received tone. The access terminal may detect which sample of the plurality of samples exhibits a maximum correlation value. The access terminal may further determine a location of the received tone based on the sample exhibiting the maximum correlation value. In some examples, the location of the received tone may be determine based on the sample exhibiting the maximum correlation value when a predicted signal-to-noise ratio (SNR) is above a predetermined threshold. Otherwise, the access terminal may determine the tone location based on a central location between a first sample with a correlation value above a predefined threshold and a first subsequent sample with a correlation value below the predefined threshold. Other aspects, embodiments, and features are also included.