Abstract:
A method of allocating wireless resources in a wireless communication system is disclosed. More specifically, the method includes allocating distributed chunks to at least one user equipment (UE) on a frequency domain, wherein the distributed chunks are localized chunks which are allocated to the wireless resources according to a distributed allocation scheme, constructing a map for allocating localized chunks in consideration of the allocated distributed chunks, wherein the localized chunks are the localized chunks allocated to the wireless resources according to a localized allocation scheme, and allocating the localized chunks to the at least one UE after all of the distributed chunks are allocated. Here, the distributed chunks and the localized chunks are mutually exclusive.
Abstract:
A method of exchanging channel quality information between a base station and a user equipment in a mobile communication system is disclosed. A method of transmitting channel quality information in a mobile communication system which transmits channel quality information from a user equipment to a base station comprises transmitting channel quality information, which is measured based on a signal received from the base station, to the base station, receiving feedback information of the channel quality information from the base station, and transmitting difference information to the base station, the difference information for matching the channel quality information transmitted from the user equipment with channel quality information received by the base station based on the feedback information.
Abstract:
A method for band limiting in a Single Carrier Frequency Division Multiple Access (SC-FDMA) communications system comprises generating a SC-FDMA data symbol block and band-limiting the SC-FDMA data symbol block using a window (309). A transmitter in a SC-FDMA communications system comprises a SC-FDMA data symbol block generator which generates a SC-FDMA data symbol block and a window (309) for band limiting the SC-FDMA data symbol block. Using a window (309) for band limiting has an advantage to decrease the number of calculations because only multiplication's between the transmitted signal and the window (309) are required.
Abstract:
A method for effectively transmitting/receiving a codeword in a MIMO system is disclosed. In a system including a plurality of predetermined rank structures, a reception end transmits rank information (RI), precoding matrix index (PMI), and channel quality information (CQI) of each codeword to a transmission end. The transmission end selects a rank structure on the basis of information received from the reception end. The transmission end selects only some codeword blocks among a plurality of codeword blocks available for the selected rank structure, transmits signals via the selected codeword blocks, and transmits a null signal for the non-selected codeword blocks.
Abstract:
Operations of a relay are disclosed. To perform a hybrid automatic repeat request (HARQ), the relay receives a plurality of codewords from a base station and transmits a status indicator with respect to the plurality of codewords to the base station. The status indicator is a signal informing the base station about whether or not the configuration of an HARQ has been changed. Although a backhaul link and an access link are asymmetric, HARQ operation can be achieved.
Abstract:
A method of allocating pilot bits in a wireless communication system using a multiple carrier modulation (MCM) is disclosed. The method includes allocating a plurality of precoded data symbols precoded by a precoding matrix module and a plurality of non-precoded pilot bits to a plurality of subcarriers, and transmitting the allocated precoded data symbols and the allocated non-precoded pilot bits.
Abstract:
A method for transmitting uplink signals, which include ACK/NACK signals, control signals other than the ACK/NACK signals, and data signals, is disclosed. The method comprises serially multiplexing the control signals and the data signals; sequentially mapping the multiplexed signals within a specific resource region in accordance with a time-first mapping method, the specific resource region including a plurality of symbols and a plurality of virtual subcarriers; and arranging the ACK/NACK signals at both symbols near symbols to which a reference signal of the plurality of symbols is transmitted. Thus, the uplink signals can be transmitted to improve receiving reliability of signals having high priority.
Abstract:
A method for adaptively allocating resources of an uplink control channel according to a system situation is disclosed. If a base station (BS) recognizes the system situation, establishes control information for resource allocation, and transmits the control information to a mobile station (MS), the mobile station (MS) allocates resources for transmitting uplink control information using a specific block or a specific resource distribution method according to the corresponding control information. The system situation may be changed according to the number of users contained in the BS's coverage or the usage of a multi-antenna. The variation of the system situation is actively reflected so that the uplink channel resources can be effectively used.
Abstract:
Methods for transmitting and receiving data using a plurality of carriers are disclosed. One of the methods comprises multiplexing the multicast/broadcast data and the unicast data in a frame and attaching a pilot signal to the frame. Another of the methods comprises receiving the radio frame including a plurality of data symbols multiplexed multicast/broadcast data with unicast data and retrieving the multicast/broadcast data and the unicast data from the radio frame.
Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals ina mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.