Abstract:
The present invention provides an array substrate and a manufacturing method thereof, a display panel and a display device. The array substrate includes a plurality of pixel units, each of which includes: a TFT area provided with a TFT including a gate, a gate insulation layer, an active area, a source and a drain; and a display area provided with a pixel electrode.
Abstract:
An apparatus and method for coating an organic film are disclosed. The apparatus comprises an evaporation device, an electron emission device and a spray device; wherein the evaporation device comprises an evaporation container, the evaporation container is a linear evaporation container, in which a uniform organic gas is generated; the electron emission device is horizontally arranged over the evaporation container such that the organic gas evaporated in the evaporation container is uniformly charged and becomes charged organic gas; the spray device is provided with an electric field, under which the charged organic gas is moved toward a substrate so as to deposit the organic film on the substrate.
Abstract:
A light-emitting diode (LED) display substrate, a method for manufacturing the same, and a display device are provided and involve the display field. The method for manufacturing the LED display substrate comprises: forming a transparent conductive anode (201) on a substrate (200); forming a pixel region defined by a first PDL (202) and a second PDL (203) on the substrate (200) on which the anode (201) is formed, in which the second PDL (203) made of a hydrophobic material is disposed on the first PDL (201) made of a hydrophilic material; filling a luminescent material into the pixel region to form an emission layer (204) with the luminescent material; and forming a conductive cathode (205) on the substrate (200) on which the emission layer (204) is formed. The manufacturing method allows the luminescent materials to be flatly laid on the LED display substrate so as to improve the luminous quality of the LED display substrate.
Abstract:
Embodiments of the invention provide a thin film transistor, a method of manufacturing the same, an array substrate comprising the thin film transistor and a display device. The method of manufacturing the thin film transistor comprises steps of forming a gate electrode (220), a gate insulating layer (230), an oxide active layer (240), a source electrode (260) and a drain electrode (270) on a substrate (210). After forming the oxide active layer (240), the method further comprises a step of forming an etch barrier layer (250) of a metal oxide on the oxide active layer (240).
Abstract:
The present invention provides a thin film transistor and a manufacturing method thereof, an array substrate comprising the thin film transistor and a manufacturing method thereof, and a display apparatus comprising the array substrate. The manufacturing method of the thin film transistor comprises steps of forming a gate, a gate insulating layer, a semiconductor active layer, a source and a drain on a substrate, wherein the steps of forming the gate insulating layer and the semiconductor active layer comprise: preparing an insulating film, the insulating film comprises metal oxide insulating material; performing ion implantation on a predefined region of the insulating film, so that the metal oxide insulating material of partial-thickness of the insulating film in the predefined region is transformed into metal oxide semiconductor material to form the semiconductor active layer, and the rest of the insulating film forms the gate insulating layer.
Abstract:
Disclosed are an OLED backplane and fabrication method. The fabrication method comprises: forming a pattern including a TFT on a substrate; forming a passivation layer on the substrate including the TFT pattern; forming a color filter on the substrate including the passivation layer; forming a resin layer on the substrate including the color filter; heavily doping the resin layer of a first region in each sub-pixel on the substrate including the resin layer, the resin layer in the first region being conductive, the first region including a passivation layer via-hole region, a pixel electrode region and a connecting region between the passivation layer via-hole region and the pixel electrode region, the passivation-layer via-hole region being a position where a drain electrode of the TFT is located; and forming an organic light-emitting layer and a cathode sequentially on the substrate after the resin layer of the first region is heavily doped.
Abstract:
A thin film transistor, a pixel structure, an array substrate, a display device, a method for manufacturing a thin film transistor, and a method for manufacturing a pixel structure are disclosed. The thin film transistor includes a gate electrode, a source electrode and a drain electrode, wherein a first passivation layer made from an aluminum oxide material is provided on the source electrode and the drain electrode, and an active layer made from an aluminum oxide material doped with ions is provided in a region of the first passivation layer corresponding to the gate electrode. Since the first passivation layer as insulation material is doped with the ions to form an active layer, the etching stop layer may be omitted, thereby simplifying the structure of the thin film transistor.
Abstract:
The present invention discloses a thin film transistor, a method of manufacturing the thin film transistor, a display substrate and a display apparatus. The method comprising steps of: forming an active material layer on a substrate; forming an etch barrier material layer on the active material layer, wherein the etch barrier material layer being made of a conductive material capable of blocking a source and drain etching liquid; forming an active layer pattern and an initial etch barrier layer pattern by performing a single patterning process on the active material layer and the etch barrier material layer, wherein the initial etch barrier layer pattern comprising a first region, a second region and a third region, the first region and the third region being regions for forming a source and a drain, respectively, the second region being a region of the initial etch barrier layer pattern except the first and third regions; forming the source and the drain in the first region and the third region, respectively, by a patterning process; converting the conductive material in the second region of the initial etch barrier layer pattern into an insulation material by an annealing process, so as to form an etch barrier layer.
Abstract:
The present invention discloses a WOLED back panel and a method of manufacturing the same. The method comprises: forming a pattern of a color filter layer on a substrate; exposing the pattern of the color filter layer by halftone exposure so as to form a groove structure in the pattern of the color filter layer; forming a pattern of a resin material layer on a surface of the substrate formed with the groove structure, and heavily doping a partial region of the resin material layer so as to form a heavily doped part having a conductivity; the heavily doped partial region of the resin material layer corresponding to a pixel electrode region, a via region, and a connection region between the pixel electrode region and the via region; and forming an organic light-emitting layer and a cathode in order on a surface of the substrate after heavily doping the partial region of the resin material layer. The production cost is reduced in the present invention by forming a groove structure in the color filter layer instead of manufacturing a conventional pixel defining layer.
Abstract:
A thin film transistor and a manufacturing method thereof, an array substrate and a display device are provided. The method includes forming a gate electrode, a gate insulating layer, a metal oxide semiconductor (MOS) active layer, a source electrode and a drain electrode on a substrate. The MOS active layer includes forming a pattern layer of indium oxide series binary metal oxide including a first, second, and third pattern directly contacting with the source electrode and the drain electrode. An insulating layer formed over the source electrode and the drain electrode acts as a protection layer, the pattern layer of indium oxide series binary metal oxide is implanted with metal doping ions by using an ion implanting process, and is annealed, so that the indium oxide series binary metal oxide of the third pattern is converted into the indium oxide series multiple metal oxide to form the MOS active layer.