Abstract:
The present disclosure provides a pixel driving circuit, an array substrate and a display device. The pixel driving circuit comprises a charge storage unit, for receiving a power supply voltage signal; a driving unit, for generating a driving current that drives the OLED to emit light; a reset unit, for writing a voltage of an initial voltage signal into a second terminal of the charge storage unit in a reset phase; a data write unit, for writing a voltage of a data voltage signal and the threshold voltage of the driving unit into the second terminal of the charge storage unit in a data write phase; and a light emitting control unit, for controlling the power supply voltage signal to be written into the driving unit so as to generate the driving signal in a light emitting phase.
Abstract:
An electrostatic discharge (ESD) protection circuit and a display device comprising the protection circuit are provided. The protection circuit comprises a first depletion mode thin-film transistor, a second depletion mode thin-film transistor, a third depletion mode thin-film transistor, and a voltage dividing unit. This, when in normal operation, effectively prevents a signal line from releasing a large amounts of current, ensures that an internal array of the display device operates normally, and when an ESD occurs, allows for rapid discharge of an electrostatic charge accumulated on the signal line and ensures that the internal array of the display device is free from the electrostatic damage. Hence, application of the ESD protection circuit allows for utilization of low-cost depletion mode thin-film transistors to implement of electrostatic discharge and for reduced the manufacturing cost of the ESD protection circuit, thus reducing the manufacturing costs of the display device comprising the protection circuit.
Abstract:
Disclosed are a pixel circuit, a driving method thereof and a pixel array structure. The pixel circuit comprises a load controlling module(101), a load module(102), a gray scale selection module(103), a driving module(104) and a light-emitting device(105). The load controlling module(101) outputs an analog data signal through a first node and a second node under the control of a first scan signal (scan1). The load module(102) is connected with a first power supply terminal(VSS), the driving module(104), the first node(A1) and the second node(A2), respectively, and stores the analog data signal in the load module(102) and provides the driving module(104) with the analog data signal under the control of signals from the first node and the second node. The gray scale selection module(103) transmits a digital data signal to a third node(A3) located in the gray scale selection module(103) under the control of a second scan signal (scan2). The driving module(104) drives the light-emitting device(105) under the control of the signals from the second node and the third node. A first terminal of the light-emitting device(105) is connected with a second power supply terminal(VDD), a second terminal thereof is connected with the driving module(104). The pixel circuit is capable of reducing a charging time of an OLED pixel circuit.
Abstract:
Provided is an electro-static discharge protection circuit, an array substrate and a display apparatus, being capable of reducing power consumption while improving reliability of the display apparatus. The electro-static discharging protection circuit comprises: a first thin film transistor (T1), having a drain connected to a high level output terminal (VGH); a second thin film transistor (T2), having a source connected to a source of the first thin film transistor (T1) as a discharging terminal (O), a drain connected to the high level output terminal (VGH) and a gate connected to a low level output terminal (VGL); a third thin film transistor (T3), having a source and a gate connected to the low level output terminal (VGL) and a drain connected to the gate of the first thin film transistor (T1); and a voltage difference maintaining unit connected between the gate of the first thin film transistor (T1) and the discharging terminal (O), wherein the voltage difference maintaining unit is used to make the voltage difference between the gate of the first thin film transistor (T1) and the discharging terminal (O) maintain unchanged, the discharging terminal (O) being used for connecting gate lines or data lines.
Abstract:
The present invention relates to the field of display technology, and provides a pixel circuit, a driving method thereof, and a display device, so as to compensate for the TFT threshold voltage drift, thereby to improve the brightness non-uniformity of the display device and prolong the service life thereof. The pixel circuit comprises a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a first storage capacitor, a second storage capacitor, and a light-emitting element. The present invention is adapted to manufacture a display panel.
Abstract:
An electrostatic discharge (ESD) protection circuit and a display device comprising the protection circuit are provided. The protection circuit comprises a first depletion mode thin-film transistor, a second depletion mode thin-film transistor, a third depletion mode thin-film transistor, and a voltage dividing unit. This, when in normal operation, effectively prevents a signal line from releasing a large amounts of current, ensures that an internal array of the display device operates normally, and when an ESD occurs, allows for rapid discharge of an electrostatic charge accumulated on the signal line and ensures that the internal array of the display device is free from the electrostatic damage. Hence, application of the ESD protection circuit allows for utilization of low-cost depletion mode thin-film transistors to implement of electrostatic discharge and for reduced the manufacturing cost of the ESD protection circuit, thus reducing the manufacturing costs of the display device comprising the protection circuit.
Abstract:
The invention discloses an ESD protection circuit and a method for driving the same and a display panel. The ESD protection circuit in the present invention comprises: a first TFT with a drain connected to a data signal line, a source and a gate connected together as a node; a second TFT with a drain connected to a first power supply line, a source connected to the data signal line, and a gate connected to the node; a third TFT with a drain connected to the data signal line, a source connected to a second power supply line, and a gate connected to a third power supply line; a forth TFT with a drain connected to the node, a source and a gate connected to the second power supply line; and a bootstrap capacitor connected between the node and the data signal line.
Abstract:
The present disclosure provides a chip structure, a packaging structure and a manufacturing method for the chip structure. The chip structure includes at least one chip body, each of which includes at least one radio frequency front-end device; the chip structure further includes a redistribution layer stacked on the chip body and at least one pin on the redistribution layer; each radio frequency front-end device corresponds to one pin, which is electrically connected to the radio frequency front-end device through an electrical connector extending through the redistribution layer; an extending direction of the radio frequency front-end device is consistent with an extending direction of the pin corresponding to the radio frequency front-end device; a surface of the pin distal to the redistribution layer is a first plane. In the present disclosure, with the first plane, the chip may be directly and electrically connected to a flexible circuit board.
Abstract:
The present disclosure provides a flat panel detection substrate, a fabricating method thereof and a flat panel detector. The flat panel detection substrate according to the present disclosure includes a base substrate; a bias electrode and a sense electrode on the base substrate; and a semiconductor layer over the bias electrode and the sense electrode, the semiconductor layer having a thickness greater than 100 nm.
Abstract:
Embodiments of the present disclosure provide a pixel circuit and a drive method thereof, and a detector including the pixel circuit. The pixel circuit includes a photoelectric conversion circuit, a reset circuit, an amplifying circuit, a first control circuit, a second control circuit, a storage circuit, and an output circuit. The photoelectric conversion circuit is configured to convert an optical signal into an electric signal. The reset circuit is configured to reset a voltage of the first node. The amplifying circuit is configured to amplify the voltage of the first node. The first control circuit is configured to control a voltage of the second node. The second control circuit is configured to control a voltage of the third node. The storage circuit is configured to store an electric charge corresponding to the voltage outputted from the amplifying circuit. The output circuit is configured to output the stored electric charge.