Abstract:
An electronic device may include a display. The display may be an organic light-emitting diode display. The organic light-emitting diode display may have a substrate layer, a layer of organic light-emitting diode structures, and a layer of sealant. Vias may be formed in the substrate layer. The vias may be formed before completion of the display or after completion of the display. The vias may be filled with metal using electroplating or other metal deposition techniques. The vias may be connected to contacts on the rear surface of the display. The vias may be located in active regions of the display or inactive regions of the display. The display may include a top surface emission portion and a bottom surface emission portion.
Abstract:
An opaque cover for a capacitive sensor is provided. The cover includes a transparent substrate and a black color stack disposed adjacent the transparent substrate. The black color stack includes a pigment stack having a first dielectric layer, a second dielectric layer, and a first light absorbing layer positioned between the first and second dielectric layers. The first dielectric layer has a first refractive index. The second dielectric layer has a second refractive index different from the first refractive index. The black color stack also includes a plurality of second light absorption layers interleaved with a plurality of third dielectric layers.
Abstract:
An opaque cover is provided for a capacitive sensor. The cover includes a transparent substrate, and at least one white coating layer including white pigments disposed over at least one portion of the transparent substrate. The cover also includes a non-conductive mirror structure disposed over the at least one white coating layer. The non-conductive mirror structure includes a number of first dielectric layers having a first refractive index interleaved with second dielectric layers having a second refractive index. The first and second dielectric layers have dielectric constants below a threshold.
Abstract:
An expandable band includes one or more expandable links and one or more expansion mechanisms. The expandable link is movable between expanded and contracted positions. The expandable link is biased toward the contracted position. The expansion mechanism can be manipulated to transition the expandable link between the expanded and contracted positions, thus expanding and/or contracting the expandable band. The expandable links may be X links, pantographs, and/or other linkages. The expansion mechanism may include one or more restrictors operable to restrict expansion of the expandable band. The expansion mechanism may also include one or more lock mechanisms operable to prevent and/or resist contracting of the expandable band.
Abstract:
A screen having a hydrophobic portion to resist the entry of liquid into an acoustic module and a hydrophilic portion to aid in the removal of liquid from an acoustic chamber is described. The screen is placed in an orifice in the acoustic module between the external environment and the internal acoustic chamber.
Abstract:
A wearable device is coupled to a band including multiple modular functional band links that are each electrically and mechanically connected to one or more other of the band links and/or the wearable device and include one or more electronic components. In various implementations, the wearable device may receive identifiers from each of the band links, determine functionality available using the identifiers, and communicate with the band links to utilize the determine functionality. In some implementations, the band links may include multiple different output devices and the wearable device may determine to provide an output pattern and signal the respective output devices according to the output pattern. In various implementations, the band links may include multiple different input devices and the wearable device may receive input indications from the input devices and perform an action based on a pattern in which the input indications were detected by the respective input devices.
Abstract:
An expandable band includes one or more expandable links and one or more expansion mechanisms. The expandable link is movable between expanded and contracted positions. The expandable link is biased toward the contracted position. The expansion mechanism can be manipulated to transition the expandable link between the expanded and contracted positions, thus expanding and/or contracting the expandable band. The expandable links may be X links, pantographs, and/or other linkages. The expansion mechanism may include one or more restrictors operable to restrict expansion of the expandable band. The expansion mechanism may also include one or more lock mechanisms operable to prevent and/or resist contracting of the expandable band.
Abstract:
A wearable band includes a woven material having two or more stretch regions. The different stretch regions can be formed by varying the tension on subsets of the warp threads, the weft threads, or both the warp and weft threads. A system for producing the woven material can include two or more tension control devices operably connected to a processing device. Each tension control device is configured to adjust the amount of tension in a respective subset of threads (e.g., warp threads) in the woven material during a weaving operation. The processing device is configured to select thread tension patterns for the subsets of threads used during the weaving operation. Each thread tension pattern includes tension settings for the subsets of threads, where at least one tension setting in one thread tension pattern differs from the tension settings in the other tension patterns.
Abstract:
Techniques for fabricating a laminated ceramic housing that can be used for a handheld computing device that includes an enclosure having structural walls formed from a multi-layered ceramic material that can be radio-transparent. The multi-layered ceramic housing can be formed of a plurality of ceramic materials such as zirconia and alumina in any combination. The multi-layer ceramic substrate includes an inner layer and surface layers that sandwich the inner layer. The multi-layer ceramic substrate has an increased transverse strength due to the surface layers having a coefficient of thermal expansion (CTE) that is less than that of the inner layer.