Abstract:
Embodiments disclosed therein generally pertain to selectively strengthening glass. More particularly, techniques are described for selectively strengthening cover glass, which tends to be thin, for electronic devices, namely, portable electronic devices.
Abstract:
Embodiments disclosed therein generally pertain to selectively strengthening glass. More particularly, techniques are described for selectively strengthening cover glass, which tends to be thin, for electronic devices, namely, portable electronic devices.
Abstract:
Embodiments disclosed are directed to a woven fabric band that is capable of being secured to another object using threads or the band itself. The woven fabric band may include an inner layer having a first temperature melting point and an outer layer having a second temperature melting point that is higher than the first temperature melting point. When heat having the first temperature is applied to the woven fabric band, the inner layer of the woven fabric band melts while the outer layer remains in its original state. When the inner layer melts, the inner layer conforms to a first shape. As a result of the inner layer conforming to the first shape, the outer layer also conforms to the same shape.
Abstract:
Clasp assemblies for bands (e.g., for watches) are disclosed. In some embodiments, a clasp assembly may include a plurality of pivotally interconnected links, where respective links are releasably coupled to one another, and spring assemblies disposed between respective links impart biasing forces between the respective links. In some embodiments, a clasp assembly may include a clasp body, a clasp cover, and a connecting arm pivotally coupled to the clasp body at a first end of the connecting arm, and pivotally coupled to the clasp cover at a second end of the connecting arm. The clasp assembly may include springs, magnets, elastomer members, and/or other mechanisms, components, or assemblies that impart a biasing force between the clasp body, the connecting arm, and/or the clasp cover.
Abstract:
An opaque cover for a capacitive sensor is provided. The cover includes a transparent substrate and a black color stack disposed adjacent the transparent substrate. The black color stack includes a pigment stack having a first dielectric layer, a second dielectric layer, and a first light absorbing layer positioned between the first and second dielectric layers. The first dielectric layer has a first refractive index. The second dielectric layer has a second refractive index different from the first refractive index. The black color stack also includes a plurality of second light absorption layers interleaved with a plurality of third dielectric layer.
Abstract:
An opaque cover is provided for a capacitive sensor. The cover includes a transparent substrate, and at least one white coating layer including white pigments disposed over at least one portion of the transparent substrate. The cover also includes a non-conductive mirror structure disposed over the at least one white coating layer. The non-conductive mirror structure includes a number of first dielectric layers having a first refractive index interleaved with second dielectric layers having a second refractive index. The first and second dielectric layers have dielectric constants below a threshold.
Abstract:
Apparatus, systems and methods for windows integration with cover glass and for processing cover glass to provide windows for electronic devices are disclosed. Transparent windows such as a transparent camera window, a transparent illuminator window and/or a transparent display window can be integrated into the cover glass. The apparatus, systems and methods are especially suitable for cover glasses, or displays (e.g., LCD displays), assembled in small form factor electronic devices such as handheld electronic devices (e.g., mobile phones, media players, personal digital assistants, remote controls, etc.). The apparatus, systems and methods can also be used for cover glasses or displays for other relatively larger form factor electronic devices (e.g., portable computers, tablet computers, displays, monitors, televisions, etc.).
Abstract:
One embodiment of the present disclosure may take the form of an electronic device. The electronic device includes a housing defining a port and a cavity, a processing element contained within the cavity of the housing, an input/output device (such as, but not limited to, a sound wave transducer) in selective communication with the port, and a flow-blocking member movably connected to the housing. The flow-blocking member selectively prevents fluid-flow, such as the flow of air, through the port. The electronic device also includes a fluid repelling member connected to the housing and positioned in a flow path between the port and the input/output device.
Abstract:
Methods and apparatus for forming a housing, such as for an electronic device, from multi-layer materials are disclosed. The multi-layer materials include at least two layers. Typically, one or more of the layers are metal. However, different layers of the multi-layer materials can be different metals. In one embodiment, an inner layer of the multi-layer materials can be provided with or form internal features that can be for attaching parts or components to the multi-layer materials. In another embodiment, processing of an inner layer of the multi-layer materials can facilitate part formation with increased curvature and/or internal part clearance. In another embodiment, the multi-layer materials can include an intermediate layer that facilitates creation of internal features that can be for attaching parts or components to the multi-layer materials. In still another embodiment, the multi-layer materials can provide a protective layer that serves to protect an outer surface of the housing during manufacturing and/or assembly.
Abstract:
An electrical device such as a headset may have a cable. Wires in the cable may be used to connect speakers in the headset to a connector such as an audio jack. The cable may have a tubular intertwined cable cover that covers the wires. Computer-controlled servo motors in fiber intertwining equipment may be adjusted in real time so that intertwined attributes such as intertwining density and intertwining tension are varied as a function of length along the intertwined cable cover. The fiber intertwining equipment may make these variations to locally increase the strength of the intertwined cable cover and the cable in the vicinity of a bifurcation in the cable and in the vicinity of the portion of the cable that terminates at the audio jack.