Abstract:
The present invention provides a method for easily producing a particle-arranged structure. In the structure produced by the method, particles are regularly arranged. The method of the present invention comprises: preparing a dispersion comprising a solvent, a polymerizable compound dissolved in the solvent and particles insoluble and dispersed uniformly in the solvent; spin-coating the dispersion on a substrate so as to arrange the particles in the liquid phase of the dispersion; and then curing the polymerizable compound.
Abstract:
A solar cell includes: a first electrode layer formed on a substrate; a generating layer formed on the first electrode layer; and a second electrode layer formed on the generating layer, at least one of the first electrode layer and the second electrode layer being a metal electrode layer having optical transparency, the metal electrode layer having a plurality of openings that penetrate through the metal electrode layer. The metal electrode layer includes metal parts, any two metal parts of the metal electrode layer continues to each other without a cut portion, the metal electrode layer has a film thickness in the range of 10 nm to 200 nm, and sizes of the openings are equal to or smaller than ½ of the wavelength of light to be used for generating electricity.
Abstract:
The Present invention provides an organic EL display and a lighting device having high efficiency. The organic EL display comprises a substrate, a pixel-driving circuit unit, and pixels arranged in the form of a matrix on the substrate. The pixel comprises a light-emitting part, and the light-emitting part is composed of a first electrode placed near to the substrate, a second electrode placed far from the substrate, and at least one organic layer placed between the first and second electrodes. The second electrode has a metal electrode layer having a thickness of 10 nm to 200 nm, and the metal electrode layer comprises a metal part and plural openings penetrating through the layer. The metal part is seamless and formed of metal continuously connected without breaks between any points therein. The openings have an average opening diameter of 10 nm to 780 nm, and are arranged so periodically that the distribution of the arrangement is represented by a radial distribution function curve having a half-width of 5 nm to 300 nm.
Abstract:
A resistor having reliability in electrical connection between an upper surface electrode and a side face electrode, and in bonding strength between a first thin film and a second thin film is provided. The resistor includes upper surface electrodes formed on a main surface a substrate and side face electrodes disposed to side faces of the substrate and connected electrically to the pair of upper surface electrodes, respectively. The upper surface electrode includes a first upper surface electrode layer and a bonding layer overlying the first upper surface electrode layer. The side face electrode includes a first thin film disposed to a side face of the substrate, a second thin film composed of copper-base alloy film and connected electrically to the first thin film, a first plating film formed by nickel plating for covering the second thin film, and a second plating film covering the first plating film.
Abstract:
An angular velocity sensor includes a tuning-fork-shaped substrate (1), drivers (110) that are provided on the arms forming a tuning fork and vibrate the arms; monitors (150) for detecting vibrations generated by the drivers (110); and detectors (120) for detecting displacement of vibrations made in application of an angular velocity. The drivers (110), the monitors (150), and the detectors (120) are made of a lower electrode layer, a piezoelectric thin film, and an upper electrode layer formed on the arms. The outer peripheral edge of the piezoelectric thin film is shaped like a step having at least one flat portion. The flat portion along the outer peripheral edge has no upper electrode layer formed thereon. This structure prevents short circuits between the lower electrode layer and the upper electrode layer.
Abstract:
In a power supply apparatus having voltage doubler rectifier circuit (5) connected to secondary winding (1B) of transformer (1), diode (13) is connected between transistor (3) and primary winding (1A) of transformer (1). By detecting an AC voltage at a junction point between primary winding (1A) of transformer (1) and diode (13) thereby performing over-voltage protection, the difference between the maximum operating voltage and the no-load operating voltage is decreased and the voltage during no-load operation is lowered and thus small-sized power supply apparatus and peripheral equipment can be provided.
Abstract:
A tuning circuit which has a wide tuning bandwidth. The tuning bandwidth of the tuning frequency can be easily changed. The tuning circuit 1 is composed of two cascade-connected tuning amplifier sections 2 and 3. Each of the sections 2 and 3 is provided with cascade-connected phase-shifting circuits 10C and 30C, a voltage dividing circuit 60, and an adding circuit composed of a feedback resistor 70 and an input resistor 74. Prescribed tuning operation is performed by shifting the phase of a prescribed frequency by 360.degree. by means of the phase shifting circuits 10C and 30C and setting the open loop gain of a feedback loop at less than 1 when the output of the voltage dividing circuit 60 is feedback. The resistance ratio between the feedback resistor 70 and input resistor 74 of each tuning amplifier section is adjusted in order that the maximum damping of each tuning amplifier section becomes smaller and the tuning bandwidth of each amplifier section becomes wider. Therefore, since the tuning amplifier sections are cascade-connected, the maximum damping is increased and the tuning bandwidth is widened as a whole.
Abstract:
An LC element, semiconductor device and a manufacturing method thereof whereby a channel 22 is formed by applying a voltage to a gate electrode 10 having a predetermined shape formed on a p-Si substrate 30 via an insulation layer 26, whereby a connection is formed between a first diffusion region 12 and a second diffusion region 14 formed at separated positions near the surface of the p-Si substrate 30; both the channel 22 gate electrode 10 function as inductors, and between these a distributed constant type capacitor is formed, and possessing excellent attenuation characteristics over a wide band. This LC element and semiconductor device can be easily manufactured by using MOS manufacturing technology; in the case of manufacturing as a portion of a semiconductor substrate, component assembly work in subsequent processing can be omitted. Also these can be formed as a portion of an IC or LSI device.
Abstract:
A process of producing a highly spin-polarized electron beam, including the steps of applying a light energy to a semiconductor device comprising a first compound semiconductor layer having a first lattice constant and a second compound semiconductor layer having a second lattice constant different from the first lattice constant, the second semiconductor layer being in junction contact with the first semiconductor layer to provide a strained semiconductor heterostructure, a magnitude of mismatch between the first and second lattice constants defining an energy splitting between a heavy hole band and a light hole band in the second semiconductor layer, such that the energy splitting is greater than a thermal noise energy in the second semiconductor layer in use; and extracting the highly spin-polarized electron beam from the second semiconductor layer upon receiving the light energy. A semiconductor device for emitting, upon receiving a light energy, a highly spin-polarized electron beam, including a first compound semiconductor layer formed of gallium arsenide phosphide, GaAs.sub.1-x P.sub.x, and having a first lattice constant; and a second compound semiconductor layer provided on the first semiconductor layer, the second semiconductor layer having a second lattice constant different from the first lattice constant and a thickness, t, smaller than the thickness of the first semiconductor layer.
Abstract:
A rotary structure adapted to be used as a spindle unit for a miniature motor or miniature rotor or as a tape guide roller for a VTR. In the structure of the rotary mechanism, instead of a conventional expensive radial ball bearings, a substantially V-shaped groove is formed in the shaft itself so as to hold balls between this groove and the tapered surface or concave spherical ball receiving surface of an outer race provided around the groove.