Abstract:
A microfabricated optical apparatus that includes a light source driven by a waveform, a turning mirror, and a beam shaping element, wherein the waveform is delivered to the light source by at least one through silicon via. The microfabricated optical apparatus may also include a light-sensitive receiver which generates an electrical signal in response to an optical signal. The electrical signal may be communicated to external devices by at least one additional through silicon via.
Abstract:
A microfabricated optical apparatus that includes a light source or light detector in combination with an integrated turning surface to form a microfabricated optical subassembly. The integrated turning surface may be formed directly in the substrate material using gray scale lithography.
Abstract:
A MEMS device, having two flexible, permeable members which are manufactured to have sub-millimeter dimensions using MEMS fabrication procedures. The flexible, permeable members may form a reed switch, which closes an electrical connection in the presence of a magnetic field, and opens the connection otherwise. The MEMS reed switch device may be made using a three-wafer architecture of a lid wafer, a device wafer, and a lower, supporting wafer.
Abstract:
A first ion rich dielectric substrate with a patterned dielectric barrier and a oxidizable metal layer is anodically bonded to a second ion rich dielectric substrate. To bond the substrates, the oxidizable metal layer is oxidized. The dielectric barrier may inhibit the migration of these ions to the bondline, which might otherwise poison the bond strength. Accordingly, when joining the two substrates, a strong bond is maintained between the wafers.
Abstract:
A method for bonding two substrates is described, comprising providing a first and a second silicon substrate, providing a raised feature on at least one of the first and the second silicon substrate, forming a layer of gold on the first and the second silicon substrates, and pressing the first substrate against the second substrate, to form a thermocompression bond around the raised feature. The high initial pressure caused by the raised feature on the opposing surface provides for a hermetic bond without fracture of the raised feature, while the complete embedding of the raised feature into the opposing surface allows for the two bonding planes to come into contact. This large contact area provides for high strength.
Abstract:
A bonding technology is disclosed that can form an anodic, conductive bond between two optically transparent substrates. The anodic bond may be accompanied by a Second bond, for example a metal alloy, solder, eutectic and polymer bond. The two bonds may be used for the same or a different purpose, and may be selected for the following attributes: hermeticity, electrical conductivity, low RF loss, high adhesive strength, leak resistance, thermal conductivity. The attributes for each bonding technology may be the same, or they may be different.
Abstract:
A microfabricated spectrometer uses at least one filter to discriminate the frequency components of an incoming RF signal. The filter center frequencies are chosen to correspond to wavelengths of target species which may be present in the gas, and radiating at a characteristic frequency.
Abstract:
A microfabricated RF filter uses a resonant cavity weakly coupled to a transmission line, to attenuate noise sources emitting interference into the RF radiation at the resonant frequency. Radiation at the resonant frequency is leaked into the resonant cavity and build up there, until it is dumped to ground by a switch.
Abstract:
Systems and methods for forming a compact gas sensor include a multilayer etalon as a wavelength discriminating element. The position of the etalon may be adjusted to tune its transmission profile. And embodiment directed to carbon dioxide detection is described.
Abstract:
Systems and methods for forming a mm wave resonant filter include a lithographically fabricated high Q resonant structure. The resonant structure may include a plurality of cavities, each cavity having a characteristic frequency that defines its passband. A filter may include a plurality of resonant structures, and each resonant structure may include a plurality of cavities. These cavities and filters may be fabricated lithographically.