Abstract:
The present invention relates to a pixel structure for an active matrix display and to a method for manufacturing same, and the objective thereof is to simplify processes for manufacturing pixel electrodes and pixel defining layers and address a problem caused by a terminal which is formed at an edge part of the pixel electrode through the patterning of the pixel electrode. The pixel structure according to the present invention includes: a base substrate; a plurality of pixel circuit electrodes; an insulating layer; and a composite layer. The plurality of pixel circuit electrodes is arranged in a matrix form on the base substrate. The insulating layer is formed on the base substrate to cover the outer peripheries of the plurality of pixel circuit electrodes. The composite layer is integrally formed to cover the plurality of pixel circuit electrodes and the top of the insulating layer. In this case, the composite layer has: the conductive pixel electrodes that are formed to be respectively connected to the plurality of pixel circuit electrodes which are exposed from the insulating layer; and the non-conductive pixel defining layers on the outer peripheries of the pixel electrodes.
Abstract:
The present invention relates to an energy conversion device using a change of a contact surface with liquid and, more specifically, to a method and a device for converting mechanical energy into electrical energy by applying an opposite phenomenon to an electrowetting phenomenon. The energy conversion device having a simplified structure and reduced manufacturing costs with minimal malfunctions by changing a contact surface with liquid between a pair of electrodes and using the change of the contact surface with the liquid to generate electrical energy such that channel blocking can be prevented or a lubricating layer or electrodes complicatedly patterned on a channel are not required.
Abstract:
Provided are a lead-free solder, a solder paste, and a semiconductor device, and more particularly, a lead-free solder that includes Cu in a range from about 0.1 wt % to about 0.8 wt %, Pd in a range from about 0.001 wt % to about 0.1 wt %, Al in a range from about 0.001 wt % to about 0.1 wt %, Si in a range from about 0.001 wt % to about 0.1 wt %, and Sn and inevitable impurities as remainder, a solder paste and a semiconductor device including the lead-free solder. The lead-free solder and the solder paste are environment-friendly and have a high high-temperature stability and high reliability.
Abstract:
The present invention relates to a system and method for changing a wireless personal area network (WPAN) channel when the quality of communication is degraded due to a change of a wireless environment. The system according to the present invention includes slaves configured to transmit/receive data, and a master connected to the slaves and configured to obtain communication state information of the slaves and select an adjacent channel search slave from among the slaves according to the obtained communication state information of the slaves.
Abstract:
Provided are a lead-free solder, a solder paste, and a semiconductor device, and more particularly, a lead-free solder that includes Cu in a range from about 0.1 wt % to about 0.8 wt %, Pd in a range from about 0.001 wt % to about 0.1 wt %, Al in a range from about 0.001 wt % to about 0.1 wt %, Si in a range from about 0.001 wt % to about 0.1 wt %, and Sn and inevitable impurities as remainder, a solder paste and a semiconductor device including the lead-free solder. The lead-free solder and the solder paste are environment-friendly and have a high high-temperature stability and high reliability.
Abstract:
A redox flow battery including: a cathode cell including a cathode, a catholyte, and a bipolar plate; an anode cell including an anode, an anolyte, and a bipolar plate; and an ion exchange membrane interposed between the cathode cell and the anode cell, wherein at least one of the cathode and the anode comprises a carbon-coated metal foam, wherein the ion exchange membrane includes a porous substrate and a polymer disposed in pores of the porous substrate, wherein the polymer is a polymerization product of a composition for preparing an ion exchange membrane, and wherein the composition for preparing an ion exchange membrane includes a first aromatic vinyl monomer including a halogenated alkyl group or a quaternary ammonium group, and wherein the bipolar plate includes Ni, Cu, Fe, Cr, Al, W, Ti, or a mixture thereof, or an alloy thereof.
Abstract:
If a content creator that creates content and a service provider that provides the content are different, the content should be reconfigured and provided. In order to provide an interface suitable for a user environment, only a limited user environment should be considered. Thus, flexibility is low when an adaptive user interface is provided. It is possible to provide a user interface, independently of the relevant designer, by redefining content, a usage environment, and a relation between a page and a service provider and dynamically providing a user interface suitable for the user environment.
Abstract:
There are provided a sodium-metal chloride secondary battery and a method of manufacturing the same. A secondary battery that is operated at room temperature and has a more stable electrochemical characteristic is provided. The present invention provides a sodium-metal chloride secondary battery and a method of manufacturing the same. The battery includes an anode made of a sodium-containing inorganic material, an electrolytic solution containing an electrolyte (NaAlCl4) and a solvent (sulfur dioxide), and a cathode including a carbon-based material in which NaCl is generated and decomposed according to an oxidation-reduction reaction of NaAlCl4-xSO2 and a metal chloride (CuCl2).
Abstract:
The present invention relates to a sodium-sulfur dioxide secondary battery. The present invention provides a method of manufacturing a sodium-sulfur dioxide secondary battery and a configuration of the sodium-sulfur dioxide secondary battery manufactured using the method. The method includes preparing a cathode and an anode, and providing an inorganic liquid electrolyte containing sulfur dioxide (SO2) and a sodium salt (NaAlCl4) between the cathode and the anode.
Abstract:
The present invention relates to a rotor including permanent magnets having different thicknesses and to a motor including the same. In the rotor, the permanent magnets having different thicknesses at both ends thereof are inserted into the iron core of the rotor to solve the imbalance of gap flux density. According to the present invention, the motor includes a rotor and a stator having a rotor insertion hole in which the rotor is inserted in the center thereof, wherein a coil is wound around the inner circumferential surface of the rotor insertion hole. Here, the rotor includes a rotor iron core and a plurality of permanent magnets. The rotor iron core has a rotating shaft insertion hole in which a rotating shaft is inserted in the center thereof, and a plurality of permanent magnet insertion holes are defined in the circumference of the rotating shaft insertion hole.