Abstract:
A contact image sensor unit includes: a light source (10) illuminating an original; a rod-like light guide (11) guiding light from the light source to the original; an imaging element (12) forming reflected light from the original on a plurality of photoelectric conversion elements; a sensor substrate (14) on which the plurality of photoelectric conversion elements are mounted; a frame (15) to which they are attached and which has a positioning part (200) for attaching the light guide (11) thereto; and a supporting member (16) which attachably/detachably supports the light guide (11) and is attachably/detachably attached to the positioning part (200). Since the light guide (11) can be attached to the frame (15) without using an adhesive, the deformation of the light guide (11), the warpage of the contact image sensor unit and so on can be prevented.
Abstract:
In an image reader, an optical scanning unit reads an original image on an original document sheet. In the optical scanning unit, a lighting device is detachably attached to a housing to emit light toward the original document sheet. The housing houses a reading device to read the light reflected by the original document sheet. A shield member is detachably attached to the housing to shield the reading device from the lighting device to form a space for the reading device inside the housing. A slit is provided in the shield member to guide the light reflected by the original document sheet to the space for the reading device. A second positioner is provided on the shield member to engage a first positioner provided in the housing to position the reading device with respect to the lighting device.
Abstract:
In an image reader, an optical scanning unit reads an original image on an original document sheet. In the optical scanning unit, a lighting device is detachably attached to a housing to emit light toward the original document sheet. The housing houses a reading device to read the light reflected by the original document sheet. A shield member is detachably attached to the housing to shield the reading device from the lighting device to form a space for the reading device inside the housing. A slit is provided in the shield member to guide the light reflected by the original document sheet to the space for the reading device. A second positioner is provided on the shield member to engage a first positioner provided in the housing to position the reading device with respect to the lighting device.
Abstract:
The invention relates to an image reading apparatus and includes: scanning unit including a light source; a focusing mirror which reflects light from the light source on a reflecting surface portion; and a mirror holder which fixes the focusing mirror on fixing portions formed at both ends of the mirror holder, wherein, when the scanning unit is moved to read image information, the focusing mirror is formed such that the fixing portion is smaller than the reflecting surface portion in at least one of strength and rigidity.
Abstract:
An enclosure includes a first enclosure and a second enclosure. A deflector deflects a light emitted from a light source. A first optical system leads the light emitted from the light source to the deflector. A second optical system includes at least one optical element, and leads the light deflected by the deflector onto a surface to be scanned. The first enclosure holds the light source, the deflector, and the first optical system, and the second enclosure holds the at least one optical element included in the second optical system.
Abstract:
A contact image sensor is provided including a housing, a slit plate a lens, one or two light sources and a light-receiving element array mounted on a light-receiving element array substrate. The housing contains the slit plate, the lens, the one or two light sources and the light-receiving element array substrate. The optical system of the contact image sensor is aligned and one or more depressions are formed on an end of the substrate for the alignment. Power to the one or two light sources is applied through one or more leads. Each of the one or more depressions is large enough so that each of the leads can be passed through the respective depressions.
Abstract:
An optical carriage of scanner has a mirror assembly and a device assembly, the mirror assembly has a mirror mount, some mirror holder, and some supporters, and the device assembly has a chassis. In this invention, the mirror assembly and the device assembly are mechanically connected after separately formation. Further, to ensure correct shape of these mirror holders and these supporters, they could be formed by metal punch, plastic ejection, or plastic process.
Abstract:
A paper-separating plate is adapted for a paper-separating mechanism having a paper-separating roller. The paper-separating plate placed around a side of the paper-separating roller comprises a main body and a cushion. The main body has a surface and a plurality of grooves and the grooves are positioned on the surface. The cushion is positioned on the surface of the main body and covers the grooves. The cushion positioned over the partial grooves is elastically pressed onto the paper-separating roller. The grooves are linear and the direction of extending the linear grooves is substantially parallel with the axis of the paper-separating roller, the linear grooves neighboring one another or each other. Besides, the cushion is made of flexible material and the main body is made of rigid material.
Abstract:
Vision systems including a swappable camera and methods of making and using the swappable camera are disclosed. The swappable camera can include an alignment indicator storing alignment data representative of an array-housing alignment of a sensor array relative to a camera housing. The swappable camera can have a desired sensor array position. A region of interest that is concentric with the desired sensor array position can be determined using the alignment data and an image can be acquired using only pixels of the sensor array that are located within the region of interest.
Abstract:
The invention relates to an image reading apparatus and includes: scanning unit including a light source; a focusing mirror which reflects light from the light source on a reflecting surface portion; and a mirror holder which fixes the focusing mirror on fixing portions formed at both ends of the mirror holder, wherein, when the scanning unit is moved to read image information, the focusing mirror is formed such that the fixing portion is smaller than the reflecting surface portion in at least one of strength and rigidity.