Abstract:
An image sensing apparatus having a large depth of focus (DOF) and being compact in size is provided. The image sensing apparatus includes a plurality of light sources that shines light beams on an illumination portion of a document; a first mirror that receives incident light scattered by reflection from the document, to reflect the scattered light in the secondary scan direction; a plurality of first concaved aspheric mirrors that collimates light beams from the first mirror, to reflect therefrom the collimated light beams as substantially collimated light fluxes; an aperture mirror that reflects therefrom the light beams from the respective first aspheric mirrors, through apertures each having a light-shielded portion formed therearound and selectively passing the light beams therethrough; a plurality of second concaved aspheric mirrors that receives the light beams incident from the respective aperture mirror, to reflect the incident light beams as converging light beams; a second mirror that reflects the light beams in a direction perpendicular to the surface of the document, disposed on a path of the light beams to be converged by means of the second aspheric mirrors; a plurality of light receivers each having a light-receiving area that receives the light beams from the second mirrors, to form images according to the light beams from the respective apertures; and a casing where the first and second aspheric mirrors are disposed on a first side of the casing in the secondary scan direction, and the aperture mirror is disposed on a second side thereof in the secondary scan direction.
Abstract:
An image reading apparatus of the present invention includes a first light source, a first light guide, a second light source, a second light guide, light receiving elements and a lens unit. The first light source emits first light. The first light guide directs the first light from the first light source toward an image-carrying object as first linear light extending in a primary scanning direction. The second light source emits second light of a wavelength different from that of the first light. The second light guide directs the second light from the second light source toward the image-carrying object as second linear light extending in the primary scanning direction. The light receiving elements are arranged in the primary scanning direction. The first and second linear lights are reflected by the image-carrying object, and the reflected lights are guided by the lens unit toward the light receiving elements.
Abstract:
In an illumination device, a light guide is adapted to emit the light from a face thereof and is provided with an area, on a face opposite to the light emitting face, for diffusing and/or reflecting the light introduced into the light guide from an end face thereof or is provided with uneven light emitting characteristics along the longitudinal direction of the light guide, and the center of the light source positioned at the end of the light guide is placed at a position aberrated from the normal line to the area, whereby attained are compactness, a low cost, a low electric power consumption, a high efficiency of utilization of the light emitted by the light source, and excellent and uniform illumination characteristics. An image reading device and an information processing apparatus can also be equipped with the above-mentioned illumination device.
Abstract:
Transparency media adapter and methods of using the same. Implementations of a system may comprise an imaging device having a light source and at least one sensor. A media adapter operatively associated with the imaging device includes a first reflective surface and a second reflective surface arranged to shift light emitted by the light source to a predetermined focus point of the at least one sensor during an imaging operation.
Abstract:
An illuminator includes a light guide having a circular cross-section, a scatterer that is provided on a portion of the circumference of the circular cross-section and that radiates scattering light toward the inside of the light guide, and a condensing lens that condenses light emitted from the light guide and transforms the light into a linear beam, a planar beam. or a point-like beam. In the illuminator light from the light source is effectively utilized, and the light can efficiently illuminate the required illumination area. In addition, an image reader apparatus can perform high-speed reading using such an illuminator.
Abstract:
There is disclosed an illumination device in which a light guide is adapted to emit the light from a face thereof and is provided with an area, on a face opposite to the light emitting face, for diffusing and/or reflecting the light introduced into the light guide from an end face thereof or is provided with uneven light emitting characteristics along the longitudinal direction of the light guide, and the center of the light source positioned at the end of the light guide is placed at a position aberrated from the normal line to said area, whereby attained are compactness, a low cost, a low electric power consumption, a high efficiency of utilization of the light emitted by the light source, and excellent and uniform illumination characteristics. There are also disclosed an image reading device and an information processing apparatus, equipped with the above-mentioned illumination device.
Abstract:
A carrier device for a contact image sense optical scanner. The carrier device incorporates a pair of magnets with identical poles facing each other or a fluid filled sealed chamber for exerting an equal pressure on a scanning module within the scanner and maintaining close contact with a document platform throughout a scanning operation.
Abstract:
There is disclosed an illumination device in which a light guide is adapted to emil the light from a face thereof and is provided with an area, on a face opposite to the light emitting face, for diffusing and/or reflecting the light introduced into the light guide from an end face thereof or is provided with uneven light emitting characteristics along the longitudinal direction of the light guide, and the center of the light source positioned at the end of the light guide is placed at a position aberrated from the normal line to said area, whereby attained are compactnces, a low cost, a low eleotric power consumption, a high efficiency of utilization of the light emitted by the light source, and excellent and uniform illumination characteristics. There are also disclosed an image reading device and an information processing apparatus, equipped with the above-mentioned illumination device.
Abstract:
Inputs and outputs to/from the outside can be performed together by a single connecting medium. The connecting medium includes connecting terminals for connecting to a plurality of input/output terminals of a second board and connecting terminals for connecting to a lead frame package as part of a light source.
Abstract:
There is disclosed an image reading apparatus having a plurality of illuminating packages and an optical guide member for guiding lights from the plurality of illuminating packages and reflecting in the direction of an object, thereby irradiating the object in a line shape, wherein three or more illuminating packages are arranged at positions in the optical guide member which are symmetrical for a reflecting portion of the optical guide member and an image can be read at a high picture quality.