摘要:
A shielded wire includes a carbon nanostructure (CNS)-shielding layer including a CNS material in a matrix material, the CNS-shielding layer being monolithic and disposed about a dielectric layer and a conducting wire, wherein the dielectric layer is disposed between the CNS-shielding layer and the conducting wire. An extruded thermoplastic jacket includes a CNS material, the extruded thermoplastic jacket being configured to protect at least one wire. A thermoplastic article includes a CNS-infused fiber material and a flexible thermoplastic.
摘要:
Provided are an insulated ultrafine powder obtained by adding liquid metal alkoxide to a methanol-containing organic solvent in which a conductive ultrafine powder comprising a carbon material is dispersed and further adding water thereto and a method for producing the same. Also, provided are an insulated ultrafine powder obtained by adding liquid metal alkoxide to a methanol-containing organic solvent in which a conductive ultrafine powder comprising a carbon material is dispersed, further adding a coupling agent having an alkoxide group and then adding water thereto and a method for producing the same. Further, provided is a high dielectric constant resin composite material obtained by blending the insulated ultrafine powder of the present invention with a resin in a volume ratio (insulated ultrafine powder/resin) falling in a range of 5/95 to 50/50.
摘要:
Provided is a DC power cable including a conductor, an inner semiconductive layer, an insulation and an outer semiconductive layer. In particular, the inner semiconductive layer or the outer semiconductive layer may be formed from a semiconductive composition containing a polypropylene base resin or a low-density polyethylene base resin and carbon nano tubes; and the insulation may be formed from an insulation composition containing a polypropylene base resin or a low-density polyethylene base resin and inorganic nano particles. The resulting power cable may have improved properties such as volume resistivity, hot set, and so on, and excellent space charge reducing effect.
摘要:
A thermally conductive polymer composition comprising liquid crystalline polymer; metal alloy having a melting point of between about 200° C. and about 500° C.; and thermally conductive filler other than the metal alloy. The composition has a volume resistivity of at least about 1×1013 Ω·cm and a thermal conductivity of at least about 0.7 W/m·K.
摘要:
Various embodiments of the invention disclosed herein provide for adjusting the electrical response of a voltage switchable dielectric material by incorporating one or more nanophase materials. Various aspects provide for a VSDM having improved electrical and/or physical properties. In some cases, a VSDM may have improved (e.g., lower) leakage current at a given voltage. A VSDM may have improved resistance to ESD events, and may have improved resistance to degradation associated with protecting against an ESD event.
摘要:
The present invention provides a circuit connecting material for electrically connecting a first circuit member having a first circuit electrode formed on a major surface of a first circuit substrate, and a second circuit member having a second circuit electrode formed on a major surface of a second circuit substrate, with the first and the second circuit electrodes opposed to each other, comprising an adhesive component containing a fluorine-containing organic compound, wherein the adhesive component contains 0.10% or less by mass of a silicon-containing compound, in terms of silicon atoms, based on the total amount of the adhesive component.
摘要:
A coated wire is solderable with soft solder while maintaining separate phases of the core and the coating. A 100 μm to 400 μm thick nickel wire may be coated galvanically with silver. For a film resistor with coated wires as connection wires, including a platinum measurement resistor on an electrically insulating substrate and connection wires connected to the measurement resistor, the connection wires have a coated nickel core. The coating may be made of silver or glass or ceramic or a mixture of these materials, or on its outside may be made of glass or ceramic or a mixture of these materials. For producing film resistors a thin metal or glass component is deposited on a connection wire connected to a track conductor arranged on an electrically insulating substrate, and a thick glass paste is deposited and fired on this metal or glass component. For mass production of film, several film resistors encased together in glass may be partitioned by fracturing.
摘要:
A thermally conductive polymer composition comprising liquid crystalline polymer; metal alloy having a melting point of between about 200° C. and about 500° C.; and thermally conductive filler other than the metal alloy. The composition has a volume resistivity of at least about 1×1013 Ω·cm and a thermal conductivity of at least about 0.7 W/m·K.
摘要:
The impregnation of a composite tape (56) having a porous matrix with HTC particles provides for permeating a fabric substrate layer (51) of the composite tape with HTC particles and impregnating an impregnating resin into the composite tape (51). The HTC particles in the fabric (51) layer are comprised of a meso-micro mixture, which is between 1:4 to 4:1 meso sized particles to micro sized particles. Other smaller particles may also be included at lesser concentrations. The impregnating resin itself may also contain HTC particles.
摘要:
When the entire amount of conductive metal mixed powder made of copper, manganese, and germanium is 100 parts by weight, the metal mixed powder is formed by mixing 4.0 to 13.0 parts manganese by weight, 0.2 to 1.4 parts germanium by weight, and 85.6 to 95.8 parts copper by weight, and 0 to 10 parts glass powder by weight and 0 to 10 parts copper-oxide powder by weight are mixed relative to the entire amount (100 parts by weight) of these metal components. The obtained resistive paste is then baked, and the resistive composition having the low resistance value and low TCR may be obtained. In addition, a resistor is made by forming the resistive element upon a substrate.