Abstract:
A computer implemented method searches a unified translation lookaside buffer. Responsive to a request to access the unified translation lookaside buffer, a first order code within a first entry of a search priority configuration register is identified. A unified translation lookaside buffer is then searched according to the first order code for a hashed page entry. If the hashed page entry is not found when searching a unified translation lookaside buffer according to the first order code, a second order code is identified within a second entry of the search priority configuration register. The unified translation lookaside buffer is then searched according to the second order code for the hashed page entry.
Abstract:
The prioritization of large memory page mapping is a function of the access bits in the L1 page table. In a first phase of operation, the number of set access bits in each of the L1 page tables is counted periodically and a current count value is calculated therefrom. During the first phase, no pages are mapped large even if identified as such. After the first phase, the current count value is used to prioritize among potential large memory pages to determine which pages to map large. The system continues to calculate the current count value even after the first phase ends. When using hardware assist, the access bits in the nested page tables are used and when using software MMU, the access bits in the shadow page tables are used for large page prioritization.
Abstract:
A system and method for accessing memory are provided. The system comprises a lookup buffer for storing one or more page table entries, wherein each of the one or more page table entries comprises at least a virtual page number and a physical page number; a logic circuit for receiving a virtual address from said processor, said logic circuit for matching the virtual address to the virtual page number in one of the page table entries to select the physical page number in the same page table entry, said page table entry having one or more bits set to exclude a memory range from a page.
Abstract:
A computer system that is programmed with virtual memory accesses to physical memory employs multi-bit counters associated with its page table entries. When a page walker visits a page table entry, the multi-bit counter associated with that page table entry is incremented by one. The computer operating system uses the counts in the multi-bit counters of different page table entries to determine where large pages can be deployed effectively. In a virtualized computer system having a nested paging system, multi-bit counters associated with both its primary page table entries and its nested page table entries are used. These multi-bit counters are incremented during nested page walks. Subsequently, the guest operating systems and the virtual machine monitors use the counts in the appropriate multi-bit counters to determine where large pages can be deployed effectively.
Abstract:
A processor including a virtual memory paging mechanism. The virtual memory paging mechanism enables an operating system operating on the processor to use pages of a first size and a second size, the second size being greater than the first size. The mechanism further enables the operating system to use superpages including two or more contiguous pages of the first size. The size of a superpage is less than the second size. The processor further includes a page table having a separate entry for each of the pages included in each superpage. The operating system accesses each superpage using a single virtual address. The mechanism interprets a single entry in a translation lookaside buffer TLB as referring to a region of memory comprising a set of pages that correspond to a superpage in response to detecting a superpage enable indicator associated with the entry in the TLB is asserted.
Abstract:
A translation lookaside buffer (TLB) is disclosed formed using RAM and synthesisable logic circuits. The TLB provides logic within the synthesisable logic for pairing down a number of memory locations that must be searched to find a translation to a physical address from a received virtual address. The logic provides a hashing circuit for hashing the received virtual address and uses the hashed virtual address to index the RAM to locate a line within the RAM that provides the translation.
Abstract:
A system and method of improved handling of large pages in a virtual memory system. A data memory management unit (DMMU) detects sequential access of a first sub-page and a second sub-page out of a set of sub-pages that comprise a same large page. Then, the DMMU receives a request for the first sub-page and in response to such a request, the DMMU instructs a pre-fetch engine to pre-fetch at least the second sub-page if the number of detected sequential accesses equals or exceeds a predetermined value.
Abstract:
A processing system includes a page table including a plurality of page table entries. Each of the plurality of page table entries includes information for translating a virtual address page to a corresponding physical address page. The processing system also includes a translation lookaside buffer adapted to cache page table information. The processing system also includes memory management software responsive to changes in the page table to consolidate a run of contiguous page table entries into one or more page table entries having a larger memory page size, Y. The memory management software further determines whether the run of contiguous page table entries may be cached in an entry of the translation lookaside buffer that caches multiple page table entries, X, in a single translation lookaside buffer entry.
Abstract:
A processor including a virtual memory paging mechanism. The virtual memory paging mechanism enables an operating system operating on the processor to use pages of a first size and a second size, the second size being greater than the first size. The mechanism further enables the operating system to use superpages including two or more contiguous pages of the first size. The size of a superpage is less than the second size. The processor further includes a page table having a separate entry for each of the pages included in each superpage. The operating system accesses each superpage using a single virtual address. The mechanism interprets a single entry in a translation lookaside buffer TLB as referring to a region of memory comprising a set of pages that correspond to a superpage in response to detecting a superpage enable indicator associated with the entry in the TLB is asserted.
Abstract:
In one embodiment, the present invention includes a page fault handler to create page table entries and TLB entries in response to a page fault, the page fault handler to determine if a page fault resulted from a stack access, to create a superpage table entry if the page fault did result from a stack access, and to create a TLB entry for the superpage. Other embodiments are described and claimed.