Abstract:
A light metal workpiece with enhanced surface protection. The workpiece comprises a metal or alloy matrix having an exposed surface. A corrosion resistant oxide layer is formed in at least a portion of the exposed surface using a micro-arc oxidation technique. A first coating is applied onto at least a portion of the oxide layer using an electro-coating technique and is configured to seal the oxide layer. A second coating is applied onto at least a portion of the first coating, the second coating comprising a powder coating material. An appearance coating may optionally be applied onto at least a portion of the second coating, wherein the appearance coating includes at least one of a base coat, a color coat, and a clear coat.
Abstract:
A method for positioning nano-objects on a surface and an apparatus for implementing the method. The method includes: providing a first surface and a second surface in a position facing each other, where one or more of the surfaces exhibits one or more position structures having dimensions on the nanoscale; providing an ionic liquid suspension of the nano-objects between the two surfaces, where the suspension comprises two electrical double layers each formed at an interface with a respective one of the two surfaces, and the surfaces have electrical charges of the same sign; enabling the nano-objects in the suspension to position according to a potential energy resulting from the electrical charge of the two surfaces; and depositing one or more of the nano-objects on the first surface according to the positioning structures by shifting the minima of the potential energy towards the first surface.
Abstract:
A tilting carrier assembly for a finishing process includes a load bar configured to convey a work piece relative to a work station. A skid is configured to receive the work piece. Each of a pair of links is pivotally coupled to the load bar at a first end and pivotally coupled to the skid at an opposite second end. A horizontal span between the first ends of the pair of links is substantially greater than a horizontal span between the second ends of the pair of links.
Abstract:
A cab frame includes: a main structure having an opening on a part of an outer surface thereof; a rear structure separably connected to the main structure to cover the opening while projecting from the main structure; and first and second connectors provided to the main structure and the rear structure, respectively, the first and second connectors connected to each other in an abutted manner when the main structure and the rear structure are connected to each other. When the rear structure is connected to the main structure after being turned back to front relative to the main structure, the rear structure is temporarily fixable to the main structure via the first and second connectors. When the rear structure is turned back to front and connected to the main structure, the rear structure is housed in the main structure.
Abstract:
The present invention generally relates to coated electrodes comprising an electrically conductive substrate and a polymeric coating, and to methods for the preparation of the same.
Abstract:
An electrodepositable film-forming composition is provided, comprising a resinous phase dispersed in an aqueous medium. The resinous phase comprises: (1) an ungelled active hydrogen-containing, cationic resin derived from a polyepoxide; (2) a cationic acrylic resin containing urethane functional groups; and (3) an at least partially blocked polyisocyanate curing agent. Also provided is a coated metal substrate comprising: A) a metal substrate having at least one coatable surface, and B) a cured coating layer deposited on at least one surface of the substrate and having a coating/air interface and a coating/substrate interface, wherein the cured coating layer is deposited from the electrodepositable film-forming composition described above. Further provided is a process for coating an electroconductive substrate, comprising electrophoretically depositing on the substrate the curable, electrodepositable coating composition described above.
Abstract:
The present disclosure relates to a coating composition that can be applied to a conductive substrate via an anodic electrodeposition process, substrates coated with the coating composition and a process for applying the coating to a substrate. The electrodepositable coating composition is an aqueous dispersion comprising of an at least partially neutralized copolymer comprising α-olefin and unsaturated carboxylic acid and a curing agent. After a layer of the coating composition has been applied to the substrate, it can be heated to cure the coating and form a crosslinked network that provides a durable chip and corrosion resistant finish.
Abstract:
An object of the present invention is to provide an electrodeposition paint composition and a method of forming an electrodeposited coating, which exhibit quality of coating deposition even in the interior of narrow spaces of objects subjected to painting. A solution of the object is cationic electrodeposition paint composition in which in an aqueous medium contained are a cationic epoxy resin, a blocked isocyanate curing agent, a hydrophobic agent wherein an SP value of the hydrophobic agent (C) is 10.2 or more and less than 10.6 and is lower by 0.6 to 1.0 than an SP value of the cationic epoxy resin, a viscosity modifier, and a neutralizing acid, and in which coulombic efficiency of the cationic electrodeposition paint composition is 2.0 to 2.5 mg/(μm·C). A voltage boost rate of the voltage in painting is 30 to 70V/10 seconds.
Abstract:
Provided is a metal member including a metal substrate and a covering layer disposed on a surface of the metal substrate, where the covering layer includes a region containing an insulating layer made of an insulating material, and a region containing an electrodeposited layer having a different texture from the insulating layer and formed by electrodeposition coating or electroplating. The metal member is manufactured by an insulating-layer-forming step of forming an insulating layer made of an insulating material on the entire surface of a region of the metal substrate in which the covering layer is to be formed, a removing step of removing a portion of the insulating layer to form an exposed portion of the metal substrate, and an electrodeposited-layer-forming step of applying a paint having a different texture from the insulating layer to the exposed portion by electrodeposition coating or electroplating to form an electrodeposited layer.