Abstract:
Microporous membranes and methods for producing such membranes from ultrahigh molecular weight polyethylene are described. The method employs extrusion of a solution of UHMW-PE and porogen through a forming die followed by thermal phase separation of polymer and porogen. Microporous structures are created by removing porogen. Microporous membranes produced include membranes with good permeability to air and water making them particularly useful as filtration media and water-resistant breathable membranes.
Abstract:
A PROCESS FOR PREPARING MICROPOROUS SHEET MATERIALS IS DISCLOSED WHEREIN A LAYER OF A POLYMER SOLUTION CONTAINING THE REQUIRED AMOUNT OF INERT LIQUID IS APPLIED AT A SUITABLE TEMPERATURE TO A SUBSTRATE (E.G., A FABRIC), AND THEN THE LAYER OF SOLUTION IS SUBJECTED TO COOLING AND BATHING CONDITIONS SUCH THAT (1) THE LAYER IS COOLED BY AT LEAST 5*C., (2) THE SOLUTION IS CONVERTED TO A SUBSTANTIALLY COLLOIDAL POLYMERIC DISPERSION AND (3) THE LAYER IS BATHED WITH A SUITABLE BATHING LIQUID ADAPTED TO EXTRACT SAID SOLVENT UNTIL SUBSTANTIALLY ALL THE SOLVENT IS EXTRACTED.
Abstract:
Materials and methods are described herein that include forming a porous polymer network with antimicrobial and antifouling properties. The antifouling portion may be a polymer, such as polyethylene glycol, and the antimicrobial portion may be a metal, or a different cationic species, such as a quaternary ammonium salt. The method generally includes forming a reaction mixture comprising a formaldehyde, a bridging group, and moieties with antifouling and antimicrobial properties.
Abstract:
The present invention discloses a method for preparing a microporous polyolefin film comprising: a step of injecting a composition comprising polyolefin 30 to 60 wt % and a diluent, which can make liquid-liquid phase separation with the polyolefin thermodynamically 40 to 70 wt %, into an extruding machine, and melting and kneading thereof to prepare a single phase melt; and a step of extruding the melt while conducting liquid-liquid phase separation by passing through a section having the temperature below the liquid-liquid phase separation temperature and forming thereof in the form of a sheet, and a microporous polyolefin film prepared according to the method.
Abstract:
A problem is to provide a monolithic structure that is a porous body formed of a polysaccharide being a naturally-occurring polymer, and has continuous pores having an average pore diameter suitable for biomolecule separation to allow formation into an arbitrary shape, and a manufacturing method therefor. A solution is to manufacture the polysaccharide monolithic structure by a method including a first step for dissolving a polysaccharide into a mixed solvent including a solvent into which the polysaccharide is soluble and a solvent into which the polysaccharide is insoluble, at a temperature lower than a boiling point of the mixed solvent, to give a polysaccharide solution, and a second step for cooling the polysaccharide solution to give the polysaccharide monolithic structure. The polysaccharide monolithic structure obtained is a porous body having continuous pores having an average pore diameter of 0.01 to 20 micrometers and a thickness of 100 micrometers or more.
Abstract:
A process for producing a porous body with different physical properties in desired regions is provided by pore forming treatment, not by bonding two or more materials made porous beforehand, with, for example, an adhesive. Raw materials are prepared, each of which contains a polymer and a raw material preparation solvent. At least two types of the raw materials having different compositions are prepared. Thereafter, the respective raw materials are frozen into desired shapes to form frozen bodies thereof. The frozen bodies thus formed are brought into contact with each other to form an assembly thereof, the assembly is exposed to a condition under which the frozen bodies begin to melt, and the assembly is then freeze-dried. Thus, a porous body having regions different in physical properties can be obtained. Such a porous body can be used as, for example, an adhesion inhibitory material or a scaffold for a cell culture.
Abstract:
Microporous articles are formed by solid-liquid phase separation from a diluent in combination with a thermoplastic polymer, flame retardant and a hindered amine synergist providing novel flame retardant articles. Such articles are useful in clothing, barriers, optical films in electronic devices (such as light reflective and dispersive films), printing substrates and electrical insulation.
Abstract:
Microporous materials and articles are disclosed. The microporous materials contain a crystallizable propylene-containing polymer, a beta-nucleating agent, and a diluent that is miscible with the polymer at a temperature above the melting temperature of the polymer and that phase separates from the polymer at a temperature below the polymer crystallization temperature. The invention is also directed to methods of forming the microporous material using thermal induced phase separation and subsequent processing.
Abstract:
The invention relates to a process for preparing a microporous membrane from an unsulfonated poly(phenylene sulfide) polymer by forming a mixture of an unsulfonated poly(phenylene sulfide) polymer, an amorphous polymer, and optionally a plasticizer, heating the resulting mixture, extruding or optionally casting the mixture into a membrane, controlled cooling (quenching) or coagulating the membrane, and leaching the membrane, while optionally drawing the membrane before, during, and/or after leaching.
Abstract:
It is proposed to use a synthetic granulate or powder with a particle size of 0.1 to 10 mm as packing material for the removal of liquid, gaseous and/or dissolved constituents from a process stream, which packing material is made up of a porous, preferably dimensionally stable polymer having an overall porosity of 50 to 95% by volume, which when used as an extracting medium has pores of a diameter of 0.01 to 50 .mu.m, with an extracting liquid immobilised therein, or when used as a coalescence medium has a cellular body/window structure with the diameter of more than 50% by volume of the bodies being in the range of 100 to 700 .mu.m, which materials can be obtained by dissolving a polymer in one or more liquid and miscible compounds at a temperature above the upper critical phase separation temperature Tc, followed by a lowering of the temperature and mechanical diminution of the polymer filled with the liquid compounds, optionally followed by removal of the liquid therefrom and, optionally, refilling of at least 10% of the pore volume with an extracting liquid, characterised in that the polymer solution incorporates 5 to 60% by volume of filler, calculated on the overall solids content. The granulate or powder preferably is subjected to an aftertreatment by being coated with a powder or fibrous material having a softening temperature or melting temperature higher than that of the material to be coated.