Abstract:
The present invention relates to a composition having a gel strength of from 1.0 μN to 10.0 N, a method of preparing a composition having a gel strength of from 1.0 μN to 10.0 N, a method of hydraulically fracturing of a subterranean formation, preferably an oil well or gas well, a hydraulically fracturing fluid as well as the use of said composition for hydraulic fracturing of a subterranean formation. The present invention further relates to the gel and use of this gel in pharmaceutical applications, cosmetic applications, constructing applications, paper applications, paint applications, plastic applications, food applications and/or agricultural applications.
Abstract:
A method of manufacturing building bricks provides for mixing quartz sand, which can be barkhan bare sand, with clay and starch. NaOH and water, which can be technical water or sea water, are added to the mixture which is then subjected to semidry shaping and baking. The resulting light weight bricks produced in a simple and economical way possess low thermal conductivity, are heat- and frost proof, chemical-resistant, and biorefractory.
Abstract:
Inorganic curable systems, such as cements, plasters, ceramics, or liquid silicates, which can be used, for example, in the fields of building, construction, or the oil-drilling industry. The use of carbon nanofillers for reinforcing the mechanical properties of such systems and for improving the latter. A method for inserting carbon nanofillers, such as carbon nanotubes, in the form of a binder master batch, into an inorganic curable system with a view to preparing composite materials having improved properties.
Abstract:
A joint compound with improved crack resistance is formed by combining water, a filler such as calcium carbonate, a latex emulsion binder, a thickening system such as methylhydroxyethyl cellulose, and nanocrystalline cellulose. The nanocrystalline cellulose is provided in an amount effective to reduce the crack formation during drying.
Abstract:
An inorganic fibrous shaped refractory article having a high bio-solubility which is capable of exhibiting a desired heat resistance without containing expensive ceramic fibers, alumina powder and silica powder can be provided at a low production cost and with a low product price.An inorganic fibrous shaped refractory article includes 2 to 95 mass % of rock wool, 2 to 95 mass % of inorganic powder having a needle-like crystal structure and 3 to 32 mass % of a binder. Preferably, in the an inorganic fibrous shaped refractory article, the inorganic powder having a needle-like crystal structure has an average length of 1 to 3000 μm and an aspect ratio of 1 to 1000, and more preferably the inorganic powder having a needle-like crystal structure is wollostonite powder or sepiolite powder.
Abstract:
A mixture of material for providing at least a portion of a travelled surface. The mixture includes an aggregate with a plurality of particles. The mixture also includes a hydrocolloidal agent adapted to swell upon exposure to water to form a resilient and flexible binder, for substantially binding the particles of the aggregate together. The aggregate and the hydrocolloidal agent have an initial pH. The mixture also includes an agent for elevating the initial pH to a predetermined pH, and a hydrophilic agent.
Abstract:
A well treatment fluid containing borated galactomannan may be used to isolate a productive zone in a well having multiple productive zones. The fluid is particularly useful in treatment of wells containing a mechanical zonal isolation system in the productive zone of interest. The fluid is pumped into the well in a substantially non-hydrated form. The well treatment fluid is therefore highly effective in preferentially sealing or blocking productive zones in the formation since delayed hydration of the fluid may be controlled for up to several hours.
Abstract:
A ceramic forming batch mixture including inorganic batch materials, such as sources of alumina, titania, and silica, a pore former combination including first and second pore formers with different compositions; an organic binder; and a solvent. Also disclosed is a method for producing a ceramic article involving mixing the inorganic batch materials with the pore former combination having first and second pore formers of different composition, adding an organic binder and a solvent, forming a green body; and firing the green body. A green body having a combination of first and second pore formers with different compositions is disclosed, as are several methods for firing to produce ceramic articles such as aluminum titanate.