Abstract:
A mask loading apparatus and method employing a cassette (200) detachably mounted on an in-out cassette holder (212). The cassette is made of low Z-materials, and comprises a cover (211) and a bottom mask-supporting tray (202) locked by machine-operable locking members (224) to the cover. A lift cylinder (218) has a vacuum cup (216) which is raised to support and hold the underside (213) of the tray and, when the tray is unlocked from the cover, to move the vacuum cup, tray and mask downwardly and then laterally by a transport arm (203) to a fixed location under a mask holder (205, 220) in a lithographic apparatus.The lift cylinder then raises the cup, tray and mask to abut the mask holder and to transfer the mask to the mask holder. The lift cylinder and empty tray is then lowered and removed from a position blocking the mask as it is to be used in the lithography processing. A reversal of the sequence of steps is utilized to unload the mask from its use mode and return it to its cassette cover. An anti-rotation pin (222) prevents tray movement in the cassette and pins (236) prevent mask movement on the tray. Indication bar code or read hole or clear window (231, 232 and 230) automatically show whether a mask or calibration plate is in a cassette to be transported.
Abstract:
A system for providing an adjusted image of a scene includes an optical assembly, a capturing system coupled to the optical assembly, and a control system. The optical assembly is adjustable to alternatively be focused on a first focal area and a second focal area that is different than the first focal area. The capturing system captures a first frame of the scene when the optical assembly is focused at the first focal area, and a second frame of the scene when the optical assembly is focused at the second focal area. The first frame includes a plurality of first pixels and the second frame includes a plurality of second pixels. The control system analyzes the first frame and the second frame and utilizes graph cuts techniques to assign a depth label to at least a portion of the first frame.
Abstract:
A metrology system that uses a plurality of photo-detecting targets positioned on the objects to be assembled, a plurality of rotating photo-emitting heads, a master signal generator that generates a reference RF signal, and a signal processor that determines the position of each of the targets from signals generated by each target in response to the photo-emitting heads. During operation, the reference RF signal is broadcast to the rotating photo-emitting heads and the photo-detecting targets. The RF signal is used to determine the azimuth of the heads relative to a zero reference position to a high degree of accuracy.
Abstract:
A liquid immersion lithography apparatus includes a stage on which a wafer is held. A projection system projects a pattern image to an exposure region through an immersion liquid to expose the wafer on the stage. A plurality of supply openings are arranged to surround the exposure region, via which the liquid is supplied from above the exposure region. A plurality of recovery openings are arranged to surround the exposure region, via which the liquid is collected from above the exposure region. A part of the supply openings are selected so as to supply the liquid ahead of the exposure region in a direction in which the stage moves.
Abstract:
A lithographic projection apparatus that is arranged to project a pattern from a patterning device onto a substrate using a projection system has a liquid supply system arranged to supply a liquid to a space between the projection system and the substrate. The apparatus also includes a liquid collecting system that includes a liquid collection member having a mesh member through which a liquid is collected from a surface of an object opposite to the liquid collection member.
Abstract:
A stage assembly (220) that moves a work piece (200) along a first axis, along a second axis and along a third axis includes a first stage (238), a first mover assembly (242) that moves the first stage (238) along the first axis, a second stage (240) that retains the work piece (200), a second mover assembly (244), and a non-contact bearing (257). The second mover assembly (244) moves the second stage (240) relative to the first stage (238) along the first axis, along the second axis, and along the third axis. The non-contact bearing (257) supports the mass of the second stage (240). Further, the non-contact bearing (257) allows the second stage (240) to move relative to the first stage (238) along the first axis and along the second axis. The second mover assembly (244) can move the second stage (240) with at least four degrees of movement.
Abstract:
A new and useful optical imaging process is provided for imaging of a plurality of substrates, in a manner that makes efficient use of an optical imaging system with the capability to image a single reticle to a pair of imaging locations, and addresses the types of substrate stage movement patterns to accomplish such imaging in an efficient and effective manner. At least three substrates are imaged by moving their substrate stages in patterns whereby (i) two of the substrates are completely imaged at respective imaging locations, (ii) a substrate on at least one of the three stages is partially imaged at one imaging location and then partially imaged at the other imaging location, and (iii) the movement of the stages of the three substrates is configured to avoid movement of the stages of the three substrates in paths that would cause interference between movement of any one substrate stage with movement of any of the other substrate stages.
Abstract:
A lithographic projection apparatus includes an optical element through which a substrate is exposed with an exposure beam. A space between the optical element and the substrate is filled with liquid during the exposure. A gap is formed between a member and a surface of the optical element through which the exposure beam does not pass. The liquid is supplied to the gap.
Abstract:
An exposure apparatus (10) for transferring a mask pattern (452) from a mask (12) to a substrate (14) includes an illumination system (18), a mask stage assembly (22), a substrate stage assembly (24), and a control system (28). The substrate (14) includes a first site (1) and a second site (2) that are adjacent to each other and that are aligned with each other along a first axis. The illumination system (18) generates an illumination beam (35) that is directed at the mask (12). The mask stage assembly (22) retains and positions the mask (12) relative to the illumination beam (35). The substrate stage assembly (24) retains and positions the substrate (14). The control system (28) controls the illumination system (18) and the substrate stage assembly (24) so that the mask pattern (452) is sequentially transferred to the first site (1) and then the second site (2) while the substrate stage assembly (24) is moving the substrate (24) in a first mask direction along the first axis. With this design, the substrate (14) is being moved in the same direction along the first axis during the exposure of successive sites (1) (2) and there is no need to stop the substrate (14) and/or reverse the direction of the substrate (14) during the exposure of successive sites (1) (2). This allows the exposure apparatus (1) to have improved throughput for a given acceleration and deceleration profile.
Abstract:
Actuator arrays for use in adaptive-optical elements and optical systems containing at least one such element are disclosed. The actuator arrays provide more precise control of the shape of the adaptive-optical surface while utilizing fewer actuators than conventional systems. An adaptive-optical system of an embodiment includes an array of force devices coupled to a deformable optical surface. The force devices of the array are arranged in braking groups and force-altering groups such that each force device belongs to a respective combination of braking group and force-altering group. A respective force controller is coupled to the force devices of each force-altering group, and a respective braking controller is coupled to the force devices of each braking group. The force-altering group adjusts as required the respective forces exerted on the optical surface by the force devices of the respective force-altering group, whereas the braking controller when actuated prevents changes in respective forces exerted by the force devices of the respective braking group.