Abstract:
Techniques are provided for constructing or determining a training sequence as a part of transmission preamble to minimize (or at least reduce) a peak-to-average power ratio (PAPR) at a transmitting node. In one example, a long training field (LTF) sequence of a preamble is determined that combines a set of interpolating sequences with LTF tone values. The LTF tone values may cover at least a portion of bandwidth of a first size, with each of the LTF tone values repeated for different subcarriers. The phases of tones of the LTF sequence may be rotated per bandwidth of the first size and certain tones of the LTF sequence may have a stream of values at pilot locations. For example, the phases of tones of the LTF sequence may be rotated in an effort to reduce PAPR during a transmission of the LTF sequence.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an apparatus includes a processor configured to determine a first set of CSD values for transmitting a first set of information on a plurality of antennas, determine a second set of CSD values for transmitting a second set of information on the plurality of antennas, and transmit the first set of information based on the first set of CSD values and the second set of information based on the second set of CSD values.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an apparatus is configured determine a number of symbols in a data field. The apparatus is configured to distribute a first number of data bits to each encoder in a subset of encoders in a set of encoders based on the determined number of symbols. The apparatus is configured to distribute a second number of data bits to a last encoder in the set of encoders based on the determined number of symbols. The apparatus is configured to transmit data to a second wireless device. The data is encoded based on the distributed first and second number of data bits.
Abstract:
Methods, systems, and devices for wireless communication are described. An access point (AP) may use wireless local area network (WLAN) signaling fields in a multiple user transmission preamble to communicate with a number of stations greater than a threshold. For example, the AP may determine that the number of stations is greater than the threshold and generate a compression indicator and an indication of the number of stations to include in a first signaling field. The AP may then generate a spatial configuration indicator in a second signaling field based on the number of stations and transmit the first and second signaling fields in a preamble of the multiple user transmission. Upon receiving the preamble, a station may identify the compression indicator and number of stations, and the spatial configuration indicator in the first and second signaling fields, and decode the multiple user transmission using a determined spatial decoding scheme.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, the apparatus is configured to determine a number of data symbols for transmitting a data payload. The apparatus is configured to determine a number of payload bits for transmitting the data payload based on the determined number of data symbols. The apparatus is configured to transmit a data frame. The data frame includes a signal field and data symbols encoded based on the data payload, the determined number of data symbols, and the determined number of payload bits, in which the data symbols are encoded using LDPC encoding or BCC encoding.
Abstract:
Methods and apparatuses for communicating over a wireless communication network using a resource unit are disclosed herein. One method includes generating a high-efficiency long training (HE-LTF) field, based on at least one of a sequence x=[+1, +1, +1, −1, −1, −1, +1, −1, −1, +1, −1], a rotation pattern C=[c1−cy], a sequence M1=[c1.*x, c2.*x, c3.*x, c4.*x, c5.*x, c6.*x, c7.*x, c8.*x, c9.*x, c10.*x, c11.*x], a sequence M2=[+1, +1, +1, +1, +1, −1, −1, +1, +1, −1, +1, −1, +1], and a sequence M3=[+1, +1, +1, −1, −1, +1, −1]. The method further includes transmitting the HE-LTF field.
Abstract:
A method of wirelessly communicating a packet including a first portion for transmission over at least one channel of a first transmission type and a second portion for transmission over at least one channel of a second transmission type. In one aspect, the method includes generating, at a wireless device, a packet including a first portion having a first symbol duration. The packet further includes a second portion having a second symbol duration greater than the first. The second portion can include a plurality of repeated portions of the signal field, the repeated portions having the second symbol duration. The first portion includes a first training field. The method further includes prepending or appending a second training field to the first portion. The second training field has the second symbol duration. The method further includes transmitting the packet.
Abstract:
Methods, devices, and computer program products for optimally phase rotating duplicate frames in wireless LAN transmissions are disclosed. In one aspect, phase rotation sequences may be chosen in order to minimize a peak-to-average power ratio (PAPR) of a frame or data unit, or of a portion of a frame or data unit, where the frame contains a plurality of identical frequency segments, such as a duplicate frame. The method involves selecting a frame bandwidth, and then selecting a phase rotation sequence based upon the frame bandwidth. The method further includes generating a frame including a number of identical 1 MHz frequency segments, and rotating some of those segments relative to other segments, based on the selected phase rotation sequence. The method further includes transmitting the frame.
Abstract:
Systems, methods, and devices for communicating long packets are described herein. In one aspect, an apparatus for wireless communication includes a receiver and a processor. The receiver wirelessly receives via wireless local area network a data unit comprising a plurality of training fields interposed between data symbols. The plurality of training fields includes a first training field followed by a second training field. The first training field includes a gain control sequence, and the second training field includes a channel estimation sequence. The processor decodes at least one data symbol based on the plurality of training fields. In another aspect, an apparatus for wireless communication includes a processor and a transmitter. The processor generates a data unit comprising a plurality of training fields inserted between data symbols, and the transmitter wirelessly transmits the data unit via wireless local area network.
Abstract:
Systems, methods, and devices for wireless communication are provided. In one aspect, an apparatus for wireless communication is provided. The apparatus includes a processor configured to generate a packet for transmission via a wireless signal. The packet is generated for transmission over a bandwidth of 1 MHz using at least one orthogonal frequency-division multiplexing (OFDM) symbol. The apparatus further includes a transmitter configured to transmit the packet via the wireless signal having unique power spectral density characteristics.