Abstract:
An apparatus configured to code video information includes a memory and a processor in communication with the memory. The memory is configured to store video information associated with a reference layer and an enhancement layer, the reference layer comprising a reference layer (RL) picture having a first slice and a second slice, and the enhancement layer comprising an enhancement layer (EL) picture corresponding to the RL picture. The processor is configured to generate an inter-layer reference picture (ILRP) by upsampling the RL picture, the ILRP having a single slice associated therewith, set slice information of the single slice of the ILRP equal to slice information of the first slice, and use the ILRP to code at least a portion of the EL picture. The processor may encode or decode the video information.
Abstract:
In one example, a device for coding video data includes a video coder configured to code data representative of whether a tile of an enhancement layer picture can be predicted using inter-layer prediction, and predict data of the tile using inter-layer prediction only when the data indicates that the tile can be predicted using inter-layer prediction.
Abstract:
In an example, a method of processing video data includes splitting a current block of video data into a plurality of sub-blocks for deriving motion information of the current block, where the motion information indicates motion of the current block relative to reference video data. The method also includes deriving, separately for each respective sub-block of the plurality of sub-blocks, motion information comprising performing a motion search for a first set of reference data that corresponds to a second set of reference data outside of each respective sub-block. The method also includes decoding the plurality of sub-blocks based on the derived motion information and without decoding syntax elements representative of the motion information.
Abstract:
A system and method for encoding and decoding video data. A predicted residual signal of a target color component is determined as a function of one or more linear parameters of a linear model and of a residual signal of a source color component. A residual signal of the target color component is determined as a function of a remaining residual signal of the target color component and of the predicted residual signal of the target color component.
Abstract:
An apparatus configured to code (e.g., encode or decode) video information includes a memory unit and a processor in communication with the memory unit. The memory unit is configured to store video information associated with a base layer and an enhancement layer. The processor is configured to up-sample a base layer reference block by using an up-sampling filter when the base and enhancement layers have different resolutions; perform motion compensation interpolation by filtering the up-sampled base layer reference block; determine base layer residual information based on the filtered up-sampled base layer reference block; determine weighted base layer residual information by applying a weighting factor to the base layer residual information; and determine an enhancement layer block based on the weighted base layer residual information. The processor may encode or decode the video information.
Abstract:
A method for converting signals within a digital simulation environment is provided. A first analog signal is obtained via a first analog port of a conversion module within a digital simulation environment executed by a processing circuit, wherein the conversion module is configurable to bi-directionally convert between digital signals and analog signals. The first analog signal may be converted into a first digital signal within the digital simulation environment. The first digital signal may then be transmitted over a first digital port.
Abstract:
Techniques are described for using an inter-intra-prediction block. A video coder may generate a first prediction block according to an intra-prediction mode and generate a second prediction block according to an inter-prediction mode. The video coder may weighted combine, such as based on the intra-prediction mode, the two prediction blocks to generate an inter-intra-prediction block (e.g., final prediction block). In some examples, an inter-intra candidate is identified in a list of candidate motion vector predictors, and an inter-intra-prediction block is used based on identification of the inter-intra candidate in the list of candidate motion vector predictors.
Abstract:
A video coder may determine a motion vector of a non-adjacent block of a current picture of the video data. The non-adjacent block is non-adjacent to a current block of the current picture. Furthermore, the video coder determines, based on the motion vector of the non-adjacent block, a motion vector predictor (MVP) for the current block. The video coder may determine a motion vector of the current block. The video coder may also determine a predictive block based on the motion vector of the current block.
Abstract:
A video coder may determine a motion vector of a non-adjacent block of a current picture of the video data. The non-adjacent block is non-adjacent to a current block of the current picture. Furthermore, the video coder determines, based on the motion vector of the non-adjacent block, a motion vector predictor (MVP) for the current block. The video coder may determine a motion vector of the current block. The video coder may also determine a predictive block based on the motion vector of the current block.
Abstract:
A device for video decoding may include a memory configured to store video data and a processor configured receive a bitstream including encoded video data. The processor may be configured to select a number of template matching (TM) candidates for a temporal layer or slice during the video decoding. The number of TM candidates selected are fixed prior to the video decoding, or adaptively calculated during the video decoding. The processor may be configured to generate a prediction block and residual block, based on a template matching candidate, to reconstruct the video data.