Abstract:
Systems, methods, and apparatus for living object protection having extended functionality in wireless power transfer applications are provided. In one aspect, an apparatus for detecting objects in a detection area near a wireless power transfer system is provided. The apparatus comprises a plurality of radar transceivers integrated into a wireless power transmitter, each transceiver configured to transmit and receive radar signals. The apparatus comprises at least one processor configured to receive radar data from the plurality of radar transceivers. The processor is configured to compare responses in the received radar data from each of the plurality of radar transceivers. The processor is configured to determine a presence of a vehicle at a first distance from the plurality of radar transceivers based at least in part on a correlation of the responses in the received radar data from each of the plurality of radar transceivers. The processor is configured to filter portions of the received radar data corresponding to movement within a predetermined range of distances from the plurality of radar transceivers that includes the first distance.
Abstract:
Systems, methods, and apparatus for living object protection in wireless power transfer applications are provided. In one aspect, an apparatus for detecting objects in a detection area of a wireless power transfer system is provided. The apparatus comprises a plurality of radar transceivers. The apparatus comprises at least one processor configured to receive radar data from the plurality of radar transceivers, detect an object in the detection area based on the received radar data, and adjust the detection area. The apparatus is configured to adjust the detection area based on at least one of a type of chargeable vehicle present, an amount of power being wirelessly transferred by the wireless power transfer system, an alignment of a vehicle with the wireless power transfer system, or a speed of the object approaching the detection area.
Abstract:
In one aspect, an apparatus for determining alignment information of a vehicle is disclosed, the vehicle comprising an antenna circuit configured to modulate one or more electrical characteristics of the antenna circuit. The apparatus comprises multiple sensor circuits configured to generate multiple magnetic fields. At least one sensor circuit may be configured to sense the modulated electrical characteristic of the antenna circuit when the antenna circuit couples to the at least one sensor circuit via one of the magnetic fields. The apparatus may further comprise a controller circuit configured to determine alignment information of the vehicle based on the sensed modulated electrical characteristic.
Abstract:
This disclosure provides apparatuses and methods for detecting foreign objects. An apparatus for detecting a presence of an object comprises at least one radar antenna attached to a wirelessly chargeable vehicle. The at least one radar antenna is configured to transmit a radar signal into a space between a wireless power receiver of the vehicle and a wireless charger as the vehicle moves in a primary direction of movement of the vehicle and receive the radar signal. The apparatus further comprises a radar processing circuit configured to determine a presence of the object in the space based on at least one characteristic of the received radar signal. The radar processing circuit is further configured to provide an indication to receive power from the wireless charger based at least in part on the determining the presence of the object.
Abstract:
Exemplary embodiments are directed to wireless power transfer using magnetic resonance in a coupling mode region between a charging base (CB) and a remote system such as a battery electric vehicle (BEV). The wireless power transfer can occur from the CB to the remote system and from the remote system to the CB. Load adaptation and power control methods can be employed to adjust the amount of power transferred over the wireless power link, while maintaining transfer efficiency.
Abstract:
A wireless power system includes a power source, power receiver, and components thereof. The system can also include a parasitic antenna that can improve the coupling to the power source in various modes. The antenna can have both a variable capacitor and a variable inductor, and both of those can be changed in order to change characteristics of the matching.
Abstract:
This disclosure provides systems, methods and apparatus for detecting foreign objects. In one aspect an apparatus for detecting a presence of an object in a magnetic field is provided. The apparatus includes a power circuit configured to generate the magnetic field and transfer power wirelessly at a level sufficient to power or charge a load via the magnetic field. The apparatus further includes a detection circuit configured to transmit signals and detect, based on a reflection of the transmitted signals, a frequency of vibration of the object caused by the magnetic field.
Abstract:
Guidance and alignment systems are disclosed for wireless charging systems to assist in aligning the transmitter and receiver inductive power transfer (IPT) couplers. These systems guide positioning and alignment to provide sufficient coupling between the transmitter and receiver IPT couplers. Exemplary systems provide a magnetic field sensor, magnetic field generator, and magnetic vectoring to determine a position of an electric vehicle or a wireless charging base. In a magnetic vectoring system, an alignment system comprising at least three coils (or similar circuits) on a magnetically permeable substrate receives a positioning magnetic field including modulated information signals and processes the received signal to generate an output for determining a position of the positioning magnetic field source relative to the magnetic field sensor position. The alignment system may further comprise a similar structure that generates the positioning magnetic field, that may include modulated information signals, based on input signals.
Abstract:
Improved battery-charging system for a vehicle. Primary and secondary coils are located in places where the vehicle can receive power from the primary coil by pulling into a parking space, for example. The parking space may have a coil embedded in the ground, or may have an array of coils embedded in the ground. A guidance system is disclosed. Fine positioning is also disclosed. The secondary coil in the vehicle can also be raised or lowered to improve coupling.
Abstract:
A wireless power system includes a power source, power receiver, and components thereof. The system can also include a parasitic antenna that can improve the coupling to the power source in various modes. The antenna can have both a variable capacitor and a variable inductor, and both of those can be changed in order to change characteristics of the matching.