Abstract:
A first device may select a base graph from a plurality of base graphs based on one or more of (a) a decoding complexity of a second device, (b) a device category of the second device, (c) a capability of the second device, (d) a decoder mode of the second device, (e) a receiver complexity of the second device, (f) a receiver mode of the second device, (g) a power consumption of the second device, (h) a power mode of the second device, or (i) an indication from the second device. The first device may output an LDPC coded transmission to the second device based on the selected base graph.
Abstract:
Methods, systems, and devices for wireless communications are described. A first device may transmit, from a first antenna of a first antenna array of the first device to a second antenna of a second antenna array of a second device, a first set of reference signals. The first device may transmit, from a first plurality of antennas of the first antenna array to a second plurality of antennas of the second antenna array, a second plurality of reference signals. The first device may receive, from the second device, an indication based at least in part on a linear offset and one or more rotational offsets estimated by the second device associated with the first set of reference signals and the second plurality of reference signals. The first device may communicate with the second device using the first antenna array based on the indication.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a network node may determine a reference location associated with a virtual image corresponding to a target area. The network node may transmit a radio frequency signal, wherein the radio frequency signal is beamformed based at least in part on the reference location to direct the radio frequency signal to the target area. Numerous other aspects are described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first network node may transmit a first signal using a first antenna of the antenna array, the antenna array having a plurality of antennas that are arranged along a curved structure, wherein the curved structure is convex in a direction opposite a transmission direction, and wherein the first antenna is located at a first position on the curved structure so that the first signal has a first aperture with respect to the lens. The first network node may transmit a second signal using a second antenna of the plurality of antennas, wherein the second antenna is located at a second position on the curved structure so that the second signal has a second aperture with respect to the lens. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communications are described. Communication devices may perform secret key generation using a set of line-of-sight (LOS) communication modes to secure a physical channel. For example, a first device and a second device may communicate a set of reference signals over the physical channel using a set of LOS communication modes. The first device and the second device may generate a secret key based on the set of LOS communication modes, for example, by using information associated with the set of LOS communication modes to compute the secret key using a key derivation function that outputs the secret key. The first device and the second device may secure the physical channel by encrypting signaling between the first device and the second device with the secret key and communicating the signaling over the physical channel using LOS communications.
Abstract:
A mobile wireless device may dynamically alter a downlink MIMO function by switching it on and off, or switching between different downlink MIMO configurations, such as 2×MIMO and 4×MIMO. Still further, a mobile device having greater than two antennas may dynamically select a subset of the antennas to be used to receive a MIMO transmission, and further, enable a mobile device to request a subset of antennas at a base station to be used for the MIMO transmission. This dynamic control of the MIMO mode or configuration may be achieved by using implicit signaling, by way of an enlarged code word set in CQI feedback transmissions, or by using explicit signaling, by way of E-DPCCH orders. In this way, a MIMO-capable mobile device may dynamically be configured for downlink MIMO transmissions as the conditions demand, enabling MIMO to be switched off when its use might otherwise cause performance to suffer.
Abstract:
One or more scheduling grants may be received from a Node B related to a plurality of uplink MIMO streams. A determination may be made as to a primary transport power and a primary transport block size for a primary stream. A secondary transmit power and a secondary transport block size for a secondary stream may also be determined.
Abstract:
Methods, systems, and devices for wireless communications are described. A transmitting device may include a first set of antenna arrays disposed in a first shape and a receiving device may include a second set of antenna arrays disposed in a second shape. A first axis that intersects an antenna array of the first set of antenna arrays and a centroid of the first shape may be offset from a vertical direction by a first angular offset. A second axis that intersects an antenna array of the second set of antenna arrays and a centroid of the second shape may be offset from the vertical direction by a second angular offset that is different than the first angular offset. The transmitting device may transmit signaling to the receiving device using the first and second sets of antenna arrays, respectively based on difference between the first and second angular offsets.
Abstract:
Techniques are provided for determining a number of user equipment in an area. An example method for determining a number of mobile devices in a counting area includes determining the counting area, determining counting configuration information based on the counting area, transmitting the counting configuration information to one or more mobile devices, receiving counting responses from the one or more mobile devices, and determining the number of mobile devices in the counting area based on the counting responses.
Abstract:
Methods, systems, and devices for wireless communications are described. A first device may select, from multiple orbital angular momentum (OAM) modes, a set of one or more primary OAM modes and a set of one or more secondary OAM modes, where at least one primary OAM mode is activated periodically and at least one secondary OAM mode is activated based on a trigger. The first device may transmit, to a second device, a message indicating a configuration for the selected set of one or more primary OAM modes, the selected set of one or more secondary OAM modes, and discontinuous reception (DRX) parameters for each of the sets of OAM modes. The second device may monitor for a signal using a primary OAM mode using the DRX parameters for the set of primary OAM modes, and the second device may activate a second OAM mode based on receiving the signal.