Abstract:
An image capturing system includes a photoelectric conversion unit, a charge holding unit, a multiple sampling information setting unit, a multiple sampling unit, a conversion unit, and an image reconstruction unit. The photoelectric conversion unit converts optical signals received by a plurality of pixels to electric signals. The charge holding unit stores the electric signals and holds the electric signals as charge signals. The multiple sampling information setting unit sets multiple sampling information used for a multiple sampling process. The multiple sampling information includes first multiple sampling information and second multiple sampling information. The multiple sampling unit performs the multiple sampling process using the multiple sampling information and the charge signals so as to output signals. The conversion unit converts the output signals to digital signals. The image reconstruction unit generates reconstructed images using the digital signals and the multiple sampling information, and outputs the reconstructed images.
Abstract:
A movement information calculator calculates a moving direction and a speed of the moving person from a position history database. An approach time calculator calculates an approach time at which an autonomous running apparatus and the moving person approach to each other within a predetermined distance from the moving person's position, moving direction, and speed, and the running information. A gaze position obtaining unit obtains a moving person's gaze position from the moving person's position and moving direction, and the position of an obstacle recorded in an obstacle database. A gaze region calculator calculates a moving person's gaze region from the moving person's position, moving direction, and gaze position. A running information generator generates running information for making the autonomous running apparatus run to the gaze region at a predetermined time earlier than the approach time from the obstacle's position, the approach time, and the gaze region.
Abstract:
Provided is a convergence performance determination device that determines convergence eye movement performance of a user when viewing a stereoscopic video by comparing amounts of convergence information calculated from eye information obtained from the user to predetermined amounts of convergence information. The convergence performance determination device then allows a degree of stereoscopy of the stereoscopic video being viewed by the user to be changed to a degree suitable to the user based on the determined convergence eye movement performance of the user.
Abstract:
A risk-of-falling determination apparatus includes a walk information obtainer that obtains walk information of a user, a myoelectric sensor that measures a first myoelectric potential difference on an anterior surface of a thigh of the user and a second myoelectric potential difference on a posterior surface of the thigh, a control circuit that identifies an interval of a stance phase by using the walk information, calculates a degree of co-contraction at a corresponding leg of the user on the basis of the first and second myoelectric potential differences for the stance phase, and determines whether the degree of co-contraction is greater than or equal to a first threshold, and an outputter that outputs a signal indicating that the user has a high risk of falling if the degree of co-contraction is greater than or equal to the first threshold.
Abstract:
A rise action assistance device according to an aspect of the present disclosure is provided with: a myoelectric potential acquirer that acquires a myoelectric value of a sitting user's tibialis anterior muscle, and a myoelectric value of the sitting user's vastus lateralis muscle or a myoelectric value of the sitting user's vastus medialis muscle; an angle acquirer that acquires a bend angle of the sitting user's upper body; a detector circuit that detects a start of a rise action by the user, based on the myoelectric value of the user's tibialis anterior muscle, the myoelectric value of the user's vastus lateralis muscle or the myoelectric value of the user's vastus medialis muscle, and the bend angle of the user's upper body; and an assistor that starts assistance of the rise action after the start of the rise action is detected.
Abstract:
An actuator body includes a tube that has a space therein and is wound spirally about a first axis. The tube has a plurality of first portions and a plurality of second portions, the tube has one or more grooves in at least one of an outer circumferential surface and an inner circumferential surface thereof, and the one or more grooves are provided spirally about a longitudinal axis of the tube, the space is in contact with the inner circumferential surface, and the outer circumferential surface is a surface opposite to the inner circumferential surface, each of the plurality of first portions has higher torsional rigidity than each of the plurality of second portions, the plurality of first portions are aligned along the first axis, and the plurality of first portions do not overlap the plurality of second portions.
Abstract:
A biological information measurement system includes: a plurality of electrodes; a current source connected to the plurality of electrodes to supply a current thereto; a measurement unit for measuring impedance from a potential difference between the plurality of electrodes; a detector for detecting values of specific peaks from chronological data of the impedance; an envelope generator for generating an envelope of values of the specific peaks; and an output unit for outputting information of the envelope as biological information.
Abstract:
An image display device includes: an eyeball angular velocity calculation unit that calculates an eyeball angular velocity of a viewer viewing an object by an equation: eyeball angular velocity=(2 arctan(s/2d))/t, using a movement distance moved by the object included in a moving image between two sequential frames on a screen, a time interval between the two sequential frames, and a viewing distance, a distance between the viewer and the screen; a determination unit that determines whether the calculated eyeball angular velocity is not less than a lower limit of an eyeball angular velocity in a saccadic eye movement; an image processor that (a) stops the moving image or replaces the moving image with a single color image when it is determined that the calculated eyeball angular velocity is not less than the lower limit, (b) does not stop the moving image and does not replace the moving image with the single color image when it is determined that the eyeball angular velocity is less than the lower limit.
Abstract:
In an imaging device, a difference calculation unit calculates a differential signal between charge signals that have been accumulated and are held by first and charge holding units with different timings. A multiple sampling unit performs multiple sampling processing on the differential signal, and an analog digital conversion unit converts a signal that has undergone multiple sampling processing to a digital signal. That is, multiple sampling processing is performed on a differential signal with a higher sparsity than that of an image signal.
Abstract:
In an imaging device, a multiple sampling unit performs multiple sampling processing on a charge signal of a captured image, and an analog digital conversion unit converts a signal which has undergone multiple sampling processing to a digital signal. In a reconstruction device, an image reconstruction unit performs reconstruction processing on the digital signal transmitted from the imaging device using information regarding multiple sampling processing transmitted from the imaging device, and obtains an image signal.