Abstract:
Systems and methods of mesh network communication enabling a relay node to autonomously select a packet propagation mechanism. Upon receiving a packet, which may carry an indication for flooding propagation as set by the edge node originating the packet, or carry no specification for any propagation mode, the relay node determines whether the packet is eligible for routing-propagation based on a number of factors, such as whether there is an existent valid route from the source node to the destination node, whether the packet is originated from a friend edge node, and whether a route discovery process has been initiated. Accordingly, the relay node may change the indication to routing propagation and forward it by routing-relaying. Thus, the packet can be propagated over the mesh network by routing propagation, despite the initial setting for flooding propagation as specified by the edge node or no setting by the edge node.
Abstract:
A method of fast link adaptation for Bluetooth long-range wireless networks is provided. A data packet comprises a preamble, a first packet portion including a rate indication field, and a second packet portion including a PDU. The first packet portion is encoded using a first modulation and coding scheme with a first rate while the second packet portion is encoded using a second modulation and coding scheme with a second rate indicated by the RI field. A transmitter thus can use different MCS options to support variable data rates by adapting to channel conditions, and then uses the novel RI field to indicate the data rate to a receiver dynamically. As a result, fast link adaptation can be achieved for different applications with different rate requirements, to provide higher data rate, reduce connection time, lower power consumption, and improve link quality.
Abstract:
For LTE cellular data and Wi-Fi P2P technology coexistence scenario, a user equipment can generate in-device coexistence (IDC) indication message to the base station for DRX-based IDC solution. LTE data scheduling is described by a set of DRX parameters, while Wi-Fi P2P data scheduling is described by Opportunistic Power Saving (OppoPS) and Notification of Absence (NoA) parameters. When generating the IDC indication message for Wi-Fi P2P group client (GC), the DRX parameters must be selected carefully to maximize efficiency. Even though Wi-Fi shares less time, with proper time alignment, its coexistence performance could be better. For Wi-Fi P2P group owner (GO) with IDC TDM scheduling constraints, OppoPS and NoA should be aligned with DRX parameters to achieve best performance.
Abstract:
A method of fast link adaptation for Bluetooth long-range wireless networks is provided. A data packet comprises a preamble, a first packet portion including a rate indication field, and a second packet portion including a PDU. The first packet portion is encoded using a first modulation and coding scheme with a first rate while the second packet portion is encoded using a second modulation and coding scheme with a second rate indicated by the RI field. A transmitter thus can use different MCS options to support variable data rates by adapting to channel conditions, and then uses the novel RI field to indicate the data rate to a receiver dynamically. As a result, fast link adaptation can be achieved for different applications with different rate requirements, to provide higher data rate, reduce connection time, lower power consumption, and improve link quality.
Abstract:
A communications apparatus is provided. A first radio module provides a first wireless communications service and communicates with a first communications device in compliance with a first protocol. A second radio module provides a second wireless communications service and communicates with a second communications device in compliance with a second protocol. A Co-Located Coexistence radio manager detects activities of the first radio modules, obtains a first traffic pattern describing downlink and/or uplink traffic allocations of the first radio module from the first radio module, and generates a second traffic pattern of the second radio module according to the first traffic pattern to coordinate operations of the first and second radio modules. An associated method is also provided.
Abstract:
A communication apparatus is provided. A first radio module communicates with a first communications device in compliance with a first protocol to provide a first wireless communications service. A second radio module communicates with a second communications device in compliance with a second protocol to provide a second wireless communications service. The first radio module further estimates time remaining for the second radio module before a next operation of the first radio module and transmits information regarding the estimated remaining time to the second radio module. The second radio module further schedules operations of the second radio module according to the information regarding the estimated remaining time received from the first radio module.
Abstract:
A wireless communications includes a first wireless communications and a second wireless communications. The first wireless communications module transmits or receives a first wireless signal in a first frequency band selected from a first frequency range. The second wireless communications module transmits or receives a second wireless signal in a second frequency band selected from a second frequency range, and adjusts a transmission power of the second wireless signal in response to that a frequency offset between the first frequency band and the second frequency band falls within a predetermined range. The first wireless communications module is further configured to determine an in-band range in the overlapping part of the first and second frequency ranges, and a transmission power of the second wireless signal is adjusted in response to a frequency offset between the first frequency band and the second frequency band.