Abstract:
Communications apparatus includes first and second radio modules and an antenna array coupled to the first and the second radio modules and includes multiple antennas. When the first and the second radio modules operate at the same time, the first radio module negotiates with a first communications device an amount of antenna(s) to be used by a first message, so that the first radio module operates with the amount of the antenna(s) and second radio module operates with at least one of the remaining antenna(s).
Abstract:
A transmission method for a wireless communications system having a first communications device and a second communications includes when the first communications device receives an external clear to send signal, the first communications device is disabled so as to stop the first communications device from sending a first radio signals during a first time interval. The second communications device sends the clear to send signal right after the first time interval so as to stop the first communications device from sending the first radio signals during a second time interval. The first communications device is enabled to send the first radio signals right after the second time interval.
Abstract:
For LTE cellular data and Wi-Fi P2P technology coexistence scenario, a user equipment can generate in-device coexistence (IDC) indication message to the base station for DRX-based IDC solution. LTE data scheduling is described by a set of DRX parameters, while Wi-Fi P2P data scheduling is described by Opportunistic Power Saving (OppoPS) and Notification of Absence (NoA) parameters. When generating the IDC indication message for Wi-Fi P2P group client (GC), the DRX parameters must be selected carefully to maximize efficiency. Even though Wi-Fi shares less time, with proper time alignment, its coexistence performance could be better. For Wi-Fi P2P group owner (GO) with IDC TDM scheduling constraints, OppoPS and NoA should be aligned with DRX parameters to achieve best performance.
Abstract:
A method for self-forming a tree topology network is provided. The method is used in a communications apparatus. The method includes: broadcasting a discovery message; determining whether the communications apparatus receives one or more discovery responses from one or more nodes in a lower level of the tree topology network; and establishing a link with each node in the lower level according to the discovery responses.
Abstract:
A mobile communications device supporting operation on a first wireless technology and a second wireless technology is provided. The device includes a wireless module performing wireless transceiving to and from a first station of a first wireless technology and a second station of a second wireless technology, and a controller module, transmitting a control message prior to the starting of a uplink transmission period of the first wireless technology via the wireless module to occupy the uplink transmission period of the first wireless technology so as to allow transmission of signals of the second wireless technology during the uplink transmission period of the first wireless technology. In operation, the controller module further rearranges the transmission of signals of the second wireless technology to end the transmission of signals of the second wireless technology prior to the starting of a downlink transmission period of the first wireless technology.
Abstract:
A method of managing data transmission for a receiving terminal of a first wireless system wherein the first wireless system coexists with at least one second wireless system includes receiving a transmission schedule of each of the at least one second wireless system; determining a usable time period for the first wireless system according to the transmission schedule of each of the at least one second wireless system; and sending a clear to send (CTS) to self signal or a power saving signal to indicate an interruption of the usable time period according to a length of the usable time period.
Abstract:
A method of managing data transmission for a receiving terminal of a first wireless system wherein the first wireless system coexists with at least one second wireless system includes receiving a transmission schedule of each of the at least one second wireless system; determining a usable time period for the first wireless system according to the transmission schedule of each of the at least one second wireless system; and sending a clear to send (CTS) to self signal or a power saving signal to indicate an interruption of the usable time period according to a length of the usable time period.
Abstract:
For LTE cellular data and Wi-Fi P2P technology coexistence scenario, a user equipment can generate in-device coexistence (IDC) indication message to the base station for DRX-based IDC solution. LTE data scheduling is described by a set of DRX parameters, while Wi-Fi P2P data scheduling is described by Opportunistic Power Saving (OppoPS) and Notification of Absence (NoA) parameters. When generating the IDC indication message for Wi-Fi P2P group client (GC), the DRX parameters must be selected carefully to maximize efficiency. Even though Wi-Fi shares less time, with proper time alignment, its coexistence performance could be better. For Wi-Fi P2P group owner (GO) with IDC TDM scheduling constraints, OppoPS and NoA should be aligned with DRX parameters to achieve best performance.
Abstract:
Communications apparatus includes first and second radio modules and an antenna array coupled to the first and the second radio modules and includes multiple antennas. When the first and the second radio modules operate at the same time, the first radio module negotiates with a first communications device an amount of antenna(s) to be used by a first message, so that the first radio module operates with the amount of the antenna(s) and second radio module operates with at least one of the remaining antenna(s).
Abstract:
A communication method for an extending device in a communication system includes transmitting or receiving a first traffic flow and a second traffic flow from a station of the communication system in a first frequency band; transmitting or receiving the first traffic flow and the second traffic flow from an access point of the communication system in the first frequency band; and transmitting or receiving the second traffic flow from the access point in a second frequency band.