Abstract:
A mobile communications device supporting operation on a first wireless technology and a second wireless technology is provided. The device includes a wireless module performing wireless transceiving to and from a first station of a first wireless technology and a second station of a second wireless technology, and a controller module, transmitting a control message prior to the starting of a uplink transmission period of the first wireless technology via the wireless module to occupy the uplink transmission period of the first wireless technology so as to allow transmission of signals of the second wireless technology during the uplink transmission period of the first wireless technology. In operation, the controller module further rearranges the transmission of signals of the second wireless technology to end the transmission of signals of the second wireless technology prior to the starting of a downlink transmission period of the first wireless technology.
Abstract:
For LTE cellular data and Wi-Fi P2P technology coexistence scenario, a user equipment can generate in-device coexistence (IDC) indication message to the base station for DRX-based IDC solution. LTE data scheduling is described by a set of DRX parameters, while Wi-Fi P2P data scheduling is described by Opportunistic Power Saving (OppoPS) and Notification of Absence (NoA) parameters. When generating the IDC indication message for Wi-Fi P2P group client (GC), the DRX parameters must be selected carefully to maximize efficiency. Even though Wi-Fi shares less time, with proper time alignment, its coexistence performance could be better. For Wi-Fi P2P group owner (GO) with IDC TDM scheduling constraints, OppoPS and NoA should be aligned with DRX parameters to achieve best performance.
Abstract:
A method of beacon reception for a communication device in a wireless communication system is disclosed. The method comprises starting to receive a beacon from an access point (AP) of the wireless communication system, determining whether a specific element of the beacon is received, and determining whether to receive only a portion of the beacon according to the specific element.
Abstract:
For LTE cellular data and Wi-Fi P2P technology coexistence scenario, a user equipment can generate in-device coexistence (IDC) indication message to the base station for DRX-based IDC solution. LTE data scheduling is described by a set of DRX parameters, while Wi-Fi P2P data scheduling is described by Opportunistic Power Saving (OppoPS) and Notification of Absence (NoA) parameters. When generating the IDC indication message for Wi-Fi P2P group client (GC), the DRX parameters must be selected carefully to maximize efficiency. Even though Wi-Fi shares less time, with proper time alignment, its coexistence performance could be better. For Wi-Fi P2P group owner (GO) with IDC TDM scheduling constraints, OppoPS and NoA should be aligned with DRX parameters to achieve best performance.
Abstract:
A method of beacon reception for a communication device in a wireless communication system is disclosed. The method comprises starting to receive a beacon from an access point (AP) of the wireless communication system, determining whether a specific element of the beacon is received, and determining whether to receive only a portion of the beacon according to the specific element.
Abstract:
A mobile communications device supporting operation on a first wireless technology and a second wireless technology with a wireless module and a controller module is provided. The wireless module performs wireless transceiving to and from a first base station of a first wireless technology and a second base station of a second wireless technology. The controller module transmits a control message prior to the starting of a uplink transmission period of the first wireless technology via the wireless module to occupy the uplink transmission period of the first wireless technology so as to allow transmission of signals of the second wireless technology during the uplink transmission period of the first wireless technology, wherein the first wireless technology is a long term evolution (LTE) technology and the second wireless technology is a WiFi technology.