Abstract:
A method of combined direction finding (DF) and fine timing measurement (FTM) positioning in a wireless location area network (WLAN) is proposed. A multiple antenna IEEE 802.11 transmitting device (AP) can transmit signal preamble containing multiple Long Training Field (LTF) symbols in a radio frame from multiple antennas, which allows a receiving device (STA) to resolve multiple DF sounding signals transmitted from the multiple antennas and thereby estimating angle of departure (AoD). On the other hand, the AP can estimate angle of arrival (AoA) from radio signals transmitted from the STA. When the radial resolution error of AoD or AoA positioning increases, DF positioning and fine-timing measurement (FTM) ranging can be jointly applied to reduce the radial resolution error and extends the AoD/AoA service area with positing accuracy.
Abstract:
Aspects of the disclosure provide an apparatus for wireless communication. The apparatus includes a transceiver and a processing circuit. The transceiver is configured to transmit and receive wireless signals. The processing circuit is configured to receive guiding information for spatial re-use that is carried by a wireless signal transmitted from another apparatus in a same service set with the apparatus, determine wireless information surrounding the apparatus based on the received wireless signals, determine spatial re-use parameters following the guiding information and based on the wireless information surrounding the apparatus, and control the transceiver based on the determined spatial re-use parameters to control transmission concurrently with ongoing wireless communication in one or more other service sets that overlap with the service set.
Abstract:
A method of direction finding (DF) positioning based on a simplified antenna platform format in a wireless communication network is proposed. A receiver receives antenna platform format information of a transmitter having multiple antenna elements. The antenna platform format information comprises an antenna platform format indicator, antenna platform position and orientation information, a number of antenna elements, and switching delay, phase center, and polarization information for each antenna element. The receiver receives a plurality of direction finding sounding signals transmitted from the transmitter via the multiple antenna elements. The receiver performs a DF algorithm based on the plurality of DF sounding signals and the antenna platform format information and thereby estimating a DF solution. Finally, the receiver determines its own location information based on the estimated DF solution.
Abstract:
A method of direction finding (DF) positioning in a wireless location area network (WLAN) is proposed. A multiple antenna IEEE 802.11 transmitting device can transmit signal preamble containing multiple Long Training Field (LTF) symbols in a radio frame from multiple antennas simultaneously, which allows a receiving device to resolve multiple DF sounding signals transmitted from the multiple antennas. As a result, angle of departure (AoD) of the transmitting device can be estimated by using the multiple resolved DF sounding signals from each antenna for DF positioning purpose.
Abstract:
Methods and apparatus are provided for burst OFDMA support MU-MIMO in the WLAN network. In one novel aspect, pluralities of user channels are configured for a downlink wideband channel, wherein each user channel is associated with a user group selecting from a SU-SISO, or a SU-MIMO or a MU-MIMO. In one embodiment, the SIG1 and SIG2 signaling fields are independent for each user channel. In another embodiment, the SIG1 fields are duplicates for all user channels carrying common information. The SIG2 fields for each user group are different from each other carrying user group specific information. In another novel aspect, an uplink OFDMA frames contains ACK packets from multiple STAs concurrently using an uplink wideband channel. In one embodiment, one ACK packet is sent for a MU-MIMO user group. In another embodiment, the uplink ACK packet assignment is based on indications in the downlink PHY SIG field.
Abstract:
A method of direction finding (DF) positioning in a wireless location area network (WLAN) is proposed. A multiple antenna IEEE 802.11 transmitting device can transmit signal preamble containing multiple Long Training Field (LTF) symbols in a radio frame from multiple antennas simultaneously, which allows a receiving device to resolve multiple DF sounding signals transmitted from the multiple antennas. As a result, angle of departure (AoD) of the transmitting device can be estimated by using the multiple resolved DF sounding signals from each antenna for DF positioning purpose.
Abstract:
A method of direction finding (DF) positioning involving main lobe and grating lobe identification in a wireless communication network is proposed. A receiver performs DF algorithm on radio signals associated with multiple antennas over a first channel frequency and estimates a first set of DF solutions. The receiver performs DF algorithm on radio signals associated with multiple antennas over a second channel frequency and estimates a second set of DF solutions. The receiver then identifies the correct DF solution (e.g., the main lobe direction) by comparing the first set of DF solutions and the second set of DF solutions.
Abstract:
A method of performing contention-based uplink OFDMA transmission is proposed in accordance with one novel aspect. A wireless communications station (an AP) reserves both dedicated resource and contention resource for uplink OFDMA operation for a list of communications devices (STAs). For contention-based random access, the AP does not need to collect traffic requests from the STAs. The AP only needs to make simple resource arrangement. The AP only needs to specify the allocated resource for random access and the uplink OFDMA operation duration and timing for each uplink OFDMA packet. Each STA having traffic request will contend the resource based on a random access probability scheme.
Abstract:
A backward compatible frame reuse mechanism that allows new information to be defined a reused frame without causing any incorrect operation in a legacy receive device. To generate a reused frame, a portion of the frame in the first format is masked with a predetermined masking sequence (PMS) and thereby redefined as new fields in a second format. When a device that supports the reuse scheme receives a frame that possible is a reused frame, the device checks the potentially reused portion according to the first format after de-masking and also checks according to the second format without de-masking. Based on the check results, the device selects a format to resolve the frame. A legacy device receiving the reused frame only checks the reused portion without de-masking, which results in a certain check error and makes the device discard the frame without any harmful operation.
Abstract:
Methods and apparatus are provided for burst OFDMA support MU-MIMO in the WLAN network. In one novel aspect, pluralities of user channels are configured for a downlink wideband channel, wherein each user channel is associated with a user group selecting from a SU-SISO, or a SU-MIMO or a MU-MIMO. In one embodiment, the SIG1 and SIG2 signaling fields are independent for each user channel. In another embodiment, the SIG1 fields are duplicates for all user channels carrying common information. The SIG2 fields for each user group are different from each other carrying user group specific information. In another novel aspect, an uplink OFDMA frames contains ACK packets from multiple STAs concurrently using an uplink wideband channel. In one embodiment, one ACK packet is sent for a MU-MIMO user group. In another embodiment, the uplink ACK packet assignment is based on indications in the downlink PHY SIG field.