Abstract:
A method of direction finding (DF) positioning in a wireless location area network (WLAN) is proposed. A multiple antenna IEEE 802.11 transmitting device can transmit signal preamble containing multiple Long Training Field (LTF) symbols in a radio frame from multiple antennas simultaneously, which allows a receiving device to resolve multiple DF sounding signals transmitted from the multiple antennas. As a result, angle of departure (AoD) of the transmitting device can be estimated by using the multiple resolved DF sounding signals from each antenna for DF positioning purpose.
Abstract:
A method of combined direction finding (DF) and fine timing measurement (FTM) positioning in a wireless location area network (WLAN) is proposed. A multiple antenna IEEE 802.11 transmitting device (AP) can transmit signal preamble containing multiple Long Training Field (LTF) symbols in a radio frame from multiple antennas, which allows a receiving device (STA) to resolve multiple DF sounding signals transmitted from the multiple antennas and thereby estimating angle of departure (AoD). On the other hand, the AP can estimate angle of arrival (AoA) from radio signals transmitted from the STA. When the radial resolution error of AoD or AoA positioning increases, DF positioning and fine-timing measurement (FTM) ranging can be jointly applied to reduce the radial resolution error and extends the AoD/AoA service area with positing accuracy.
Abstract:
A method of direction finding (DF) positioning in a wireless location area network (WLAN) is proposed. A multiple antenna IEEE 802.11 transmitting device can transmit signal preamble containing multiple Long Training Field (LTF) symbols in a radio frame from multiple antennas simultaneously, which allows a receiving device to resolve multiple DF sounding signals transmitted from the multiple antennas. As a result, angle of departure (AoD) of the transmitting device can be estimated by using the multiple resolved DF sounding signals from each antenna for DF positioning purpose.
Abstract:
A wireless device and an associated wireless device are proposed. The wireless device includes a first receiving circuit, a second receiving circuit and a detector. The first receiving circuit is arranged to receive signals in a first band. The second receiving circuit is arranged to selectively receive signals in the first band or signal reception in a second band according to a first control signal, wherein the second band is different from the first band. The detector is arranged to detect existence of a transmission signal in the second band to set the first control signal.
Abstract:
A wireless device is provided. The wireless device includes a first transmitting circuit, a second transmitting circuit and a controller. The first transmitting circuit is arranged to transmit a signal in a first band. The second transmitting circuit is arranged to selectively transmit a signal in the first band or in a second band according to a first control signal, wherein the second band is different from the first band. The controller is arranged to set the first control signal according to a transmission mode.
Abstract:
A method of combined direction finding (DF) and fine timing measurement (FTM) positioning in a wireless location area network (WLAN) is proposed. A multiple antenna IEEE 802.11 transmitting device (AP) can transmit signal preamble containing multiple Long Training Field (LTF) symbols in a radio frame from multiple antennas, which allows a receiving device (STA) to resolve multiple DF sounding signals transmitted from the multiple antennas and thereby estimating angle of departure (AoD). On the other hand, the AP can estimate angle of arrival (AoA) from radio signals transmitted from the STA. When the radial resolution error of AoD or AoA positioning increases, DF positioning and fine-timing measurement (FTM) ranging can be jointly applied to reduce the radial resolution error and extends the AoD/AoA service area with positing accuracy.
Abstract:
A wireless device and an associated wireless device are proposed. The wireless device includes a first receiving circuit, a second receiving circuit and a detector. The first receiving circuit is arranged to receive signals in a first band. The second receiving circuit is arranged to selectively receive signals in the first band or signal reception in a second band according to a first control signal, wherein the second band is different from the first band. The detector is arranged to detect existence of a transmission signal in the second band to set the first control signal.