Abstract:
In addition to the three electrodes of a unipotential lens following a plasma chamber, an ion source for ion beam lithography or ion beam semiconductor or the like has a fourth electrode which is at the same potential as the second electrode and at a potential lower than the potential of the first and third electrodes The result is improved resolution.
Abstract:
In a pattern-lock system of particle-beam apparatus wherein the imaging of the pattern is done by means of at least two consecutive projector stages of the projecting system, reference marks are imaged upon registering means to determine the position of the particle-beam, at the location of an intermediary image of the reference marks produced by a non-final projector stage, with the registering means being positioned at locations of nominal positions of an intermediary imaging plane. Furthermore, to produce a scanning movement over the registering means the reference beamlets are shifted laterally by means of deflector means provided in the pattern defining means in dependence of a time-dependent electric voltage.
Abstract:
A beam manipulating arrangement for a multi beam application using charged particles comprises a multi-aperture plate having plural apertures traversed by beams of charged particles. A frame portion of the multi-aperture plate is heated to reduce temperature gradients within the multi-aperture plate. Further, a heat emissivity of a surface of the multi-aperture plate may be higher in some regions as compared to other regions in view of also reducing temperature gradients.
Abstract:
In a particle-optical projection system a pattern is imaged onto a target by means of energetic electrically charged particles. The pattern is represented in a patterned beam of said charged particles emerging from the object plane through at least one cross-over; it is imaged into an image with a given size and distortion. To compensate for the Z-deviation of the image position from the actual positioning of the target (Z denotes an axial coordinate substantially parallel to the optical axis), without changing the size of the image, the system includes a position detector for measuring the Z-position of several locations of the target, and a controller for calculating modifications of selected lens parameters of the final particle-optical lens and controlling said lens parameters according to said modifications.
Abstract:
In a charged-particle beam exposure device, an electrostatic lens (ML) comprises several (at least three) electrodes with rotational symmetry (EFR, EM, EFN) surrounding a particle beam path; the electrodes are arranged coaxially on a common optical axis representing the center of said particle beam path and are fed different electrostatic potentials through electric supplies. At least a subset of the electrodes (EM) form an electrode column realized as a series of electrodes of substantially equal shape arranged in consecutive order along the optical axis, wherein outer portions of said electrodes (EM) of the electrode column have outer portions (OR) of corresponding opposing surfaces (f1, f2) facing toward the next and previous electrodes, respectively. Preferably, the length of the electrode column is at least 4.1 times (3 times) the inner radius (ri1) of said surfaces (f1, f2).
Abstract:
For compensation of a magnetic field in an operating region a number of magnetic field sensors (S1, S2) and an arrangement of compensation coils (Hh) surrounding said operating region is used. The magnetic field is measured by at least two sensors (S1, S2) located at different positions outside the operating region, preferably at opposing positions with respect to a symmetry axis of the operating region, generating respective sensor signals (s1, s2), the sensor signals of said sensors are superposed to a feedback signal (ms, fs), which is converted by a controlling means to a driving signal (d1), and the driving signal is used to steer at least one compensation coil (Hh). To further enhance the compensation, the driving signal is also used to derive an additional input signal (cs) for the superposing step to generate the feedback signal (fs).
Abstract:
A particle-beam exposure apparatus (1) for irradiating a target (41) by means of a beam (2) of energetic electrically charged particles comprises: an illumination system (101) for generating and forming said particles into a directed beam (21); a pattern definition means (102) located after the illumination system for positioning a pattern of apertures transparent to the particles in the path of the directed beam, thus forming a patterned beam (22) emerging from the pattern definition means through the apertures; and a projection system (103) positioned after the pattern definition means (102) for projecting the patterned beam (22) onto a target (41) positioned after the projection system. The apparatus further comprises an acceleration/deceleration means (32) containing an electric potential gradient which is oriented substantially parallel to the path of the structured beam and constant over at least a cross-section of the beam.
Abstract:
An apparatus for masked ion-beam lithography comprises a mask maintenance module for prolongation of the lifetime of the stencil mask. The module comprises a deposition means for depositing material to the side of the mask irradiated by the lithography beam, with at least one deposition source being positioned in front of the mask, and further comprises a sputter means in which at least one sputter source, positioned in front of the mask holder means and outside the path of the lithography beam, produces a sputter ion beam directed to the mask in order to sputter off material from said mask in a scanning procedure and compensate for inhomogeneity of deposition.
Abstract:
A particle-beam exposure apparatus (1) for irradiating a target (41) by means of a beam (2) of energetic electrically charged particles comprises: an illumination system (101) for generating and forming said particles into a directed beam (21); a pattern definition means (102) located after the illumination system for positioning a pattern of apertures transparent to the particles in the path of the directed beam, thus forming a patterned beam (22) emerging from the pattern definition means through the apertures; and a projection system (103) positioned after the pattern definition means (102) for projecting the patterned beam (22) onto a target (41) positioned after the projection system. The apparatus further comprises an acceleration/ deceleration means (32) containing an electric potential gradient which is oriented substantially parallel to the path of the structured beam and constant over at least a cross-section of the beam.
Abstract:
A device (102) for defining a pattern, for use in a particle-beam exposure apparatus (100), said device adapted to be irradiated with a beam (lb,pb) of electrically charged particles and let pass the beam only through a plurality of apertures, comprises an aperture array means (203) and a blanking means (202). The aperture array means (203) has a plurality of apertures (21,230) of identical shape defining the shape of beamlets (bm). The blanking means (202) serves to switch off the passage of selected beamlets; it has a plurality of openings (220), each corresponding to a respective aperture (230) of the aperture array means (203) and being provided with a deflection means (221) controllable to deflect particles radiated through the opening off their path (p1) to an absorbing surface within said exposure apparatus (100). The apertures (21) are arranged on the blanking and aperture array means (202,203) within a pattern definition field (pf) being composed of a plurality of staggered lines (p1) of apertures. Each of the lines (p1) comprises alternately first segments (sf) which are free of apertures and second segments (af) which each comprise a number of apertures spaced apart by a row offset (pm), said row offset being a multiple of the width (w) of apertures, the length (A) of said first segments (sf) being greater than the row offset. In front of the blanking means (202) as seen in the direction of the particle beam, a cover means (201) is provided having a plurality of openings (210), each corresponding to a respective opening (230) of the blanking means and having a width (w1) which is smaller than the width (w2) of the openings (220) of the blanking array means.