Abstract:
In the control of light condensing irradiation of laser light using a spatial light modulator, the number of wavelengths of the laser light, a value of each wavelength, and incident conditions of the laser light are acquired (step S101), the number of light condensing points, and a light condensing position, a wavelength, and a light condensing intensity on each light condensing point are set (S104), and a light condensing control pattern to be provided for the laser light is set for each light condensing point (S107). Then, a modulation pattern to be presented in the spatial light modulator is designed in consideration of the light condensing control pattern (S108). Further, in the design of a modulation pattern, a design method focusing on an effect by a phase value of one pixel is used, and when evaluating a light condensing state on the light condensing point, a propagation function to which a phase pattern opposite to the light condensing control pattern is added is used. Thereby, a light modulation control method, a program, a device, and a laser light irradiation device, which are capable of preferably achieving light condensing control of laser light are achieved.
Abstract:
An adaptive optics system includes a spatial light modulator configured to spatially modulate a phase of an optical image incident on a modulation surface including N two-dimensionally arranged regions and a wavefront sensor including a lens array having N two-dimensionally arranged lenses corresponding to the N regions and an optical detection element for detecting a light intensity distribution including K converging spots formed by the lens array and configured to receive the optical image after the modulation from the spatial light modulator, wherein a correspondence relation between the region of the spatial light modulator and the converging spot formed in the wavefront sensor is specified.
Abstract:
A zoom lens includes a first lens unit including one of an SLM or a VFL, a second lens unit being optically coupled between the first lens unit and a focal plane and including one of an SLM or a VFL, and a control unit controlling focal lengths of the first and second lens units. A distance between the first lens unit and the second lens unit and a distance between the second lens unit and the focal plane are invariable. The control unit changes a magnification ratio of the zoom lens by changing the focal lengths of the first and second lens units.
Abstract:
An adaptive optics system includes a spatial light modulator configured to spatially modulate a phase of an optical image incident on a modulation surface and a wavefront sensor including a lens array having a plurality of two-dimensionally arranged lenses and an optical detection element for detecting a light intensity distribution including converging spots formed by the lens array and configured to receive the optical image after the modulation from the spatial light modulator, and compensates for wavefront distribution by controlling a phase pattern displayed in the spatial light modulator based on a wavefront shape of the optical image obtained from the light intensity distribution, wherein an amount of angular displacement between the modulation surface and the wavefront sensor is calculated.
Abstract:
A beam shaping device includes a first phase modulation unit including a phase-modulation type SLM, and displaying a first phase pattern for modulating a phase of input light, a second phase modulation unit including a phase-modulation type SLM, being optically coupled to the first phase modulation unit, and displaying a second phase pattern for further modulating a phase of light phase-modulated by the first phase modulation unit, and a control unit providing the first and second phase patterns to the first and second phase modulation units, respectively. The first and second phase patterns are phase patterns for approximating an intensity distribution and a phase distribution of light output from the second phase modulation unit, to predetermined distributions.
Abstract:
A beam expander includes a first lens unit including one of an SLM or a VFL, a second lens unit being optically coupled to the first lens unit and including one of an SLM or a VFL, and a control unit controlling focal lengths of the first and second lens units. A distance between the first and second lens units is invariable. The control unit controls the focal lengths of the first and second lens units such that a light diameter D1 of light input to the first lens unit and a light diameter D2 of light output from the second lens unit are different from each other.
Abstract:
A zoom lens includes a first lens unit including one of an SLM or a VFL, a second lens unit being optically coupled between the first lens unit and a focal plane and including one of an SLM or a VFL, and a control unit controlling focal lengths of the first and second lens units. A distance between the first lens unit and the second lens unit and a distance between the second lens unit and the focal plane are invariable. The control unit changes a magnification ratio of the zoom lens by changing the focal lengths of the first and second lens units.
Abstract:
In the control of light condensing irradiation of laser light using a spatial light modulator, the number of wavelengths, a value of each wavelength, and incident conditions of the laser light are acquired, the number of light condensing points, and a light condensing position, a wavelength, and a light condensing intensity on each light condensing point are set, and a light condensing control pattern is set for each light condensing point. Then, a modulation pattern presented in the spatial light modulator is designed in consideration of the light condensing control pattern. Further, in the design of a modulation pattern, a design method focusing on an effect by a phase value of one pixel is used, and when evaluating a light condensing state, a propagation function to which a phase pattern opposite to the light condensing control pattern is added is used.
Abstract:
In the control of light condensing irradiation of laser light using a spatial light modulator, the number of wavelengths, a value of each wavelength, and incident conditions of the laser light are acquired, the number of light condensing points, and a light condensing position, a wavelength, and a light condensing intensity on each light condensing point are set, and a distortion phase pattern provided in an optical system including the spatial light modulator to the laser light is derived. Then, a modulation pattern presented in the spatial light modulator is designed in consideration of the distortion phase pattern. Further, in the design of a modulation pattern, a design method focusing on an effect by a phase value of one pixel is used, and when evaluating a light condensing state, a propagation function to which a distortion phase pattern is added is used.