摘要:
A method of forming a dual gate structure provides a substrate, in which a first well with a first conductive type and a second well with a second conductive type are formed. An isolation structure is formed between the first well and the second well. A gate oxide layer is formed on the substrate. A polysilicon layer is formed on the gate oxide layer. A part of the polysilicon layer positioned on the first well is doped to become a first type polysilicon layer. Another part of the polysilicon layer positioned on the second well is doped to become a second type polysilicon layer. An undoped polysilicon layer is formed on the doped polysilicon layer. A part of the undoped polysilicon and a part of the doped polysilicon layer are removed to form a first gate on the first well and a second gate on the second well. Spacers are formed on the sidewalls of the first gate and on the second gate. Source/drain regions are formed in the substrate beside the first gate and the second gate. Silicide is formed on the first gate, the second gate and the source/drain regions by self-alignment to form a dual gate structure comprising the first gate and the second gate.
摘要:
A method for manufacturing a capacitor includes the steps of forming a dielectric layer over a substrate, and then forming at least one contact within the dielectric layer. Next, a first metal layer is formed on the dielectric layer and an electromigration layer is formed on the first metal layer. A patterned capacitor dielectric layer is formed on the electromigration layer in a capacitor area. A second metal layer is then formed over the substrate and defined; a portion of second metal serving as an upper electrode of the capacitor is therefore formed on the electromigration layer. A portion of the second metal layer on the contact serves as a portion of the via of the interconnects. The electromigration layer is self-alignedly patterned when patterning the second metal layer, and a portion of the electromigration layer serves as a lower electrode of the capacitor. The electromigration layer on the contact in the via area is used to prevent electromigration.
摘要:
A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the deposition of dielectric layers using high density plasma chemical vapor deposition (HDPCVD). A first HDPCVD step is carried out to form a first dielectric layer over the wiring lines and into the gaps between wiring lines. A PECVD step is carried out to deposit dielectric material over the first dielectric layer and within and to define a opening in the gap. A second HDPCVD step is carried out and the opening defined by the PECVD step is capped by a third dielectric layer. The method allows air-filled voids to be formed between adjacent metal wiring lines in a highly controlled manner which allows selection of the shape of the voids and precise location of the top of the voids. In addition, the voids are sealed by a denser and more durable material than is typical.
摘要:
A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the deposition of three oxide layers using high density plasma chemical vapor deposition (HDPCVD). A first HDPCVD step is carried out while keeping the substrate unbiased to form an oxide layer over the lines and in the gap. A second HDPCVD step in which the substrate is biased deposits a second oxide layer over the first oxide layer. During the second HDPCVD step some etching occurs and a portion of the first oxide layer is removed. A third HDPCVD step is carried out at a greater etch and sputtering rate than the second step to complete filling of the gap with dielectric material. The first oxide layer acts to protect the underlying structures from etching damage during the third step. Gaps between wiring lines can be filled with dielectric material without forming voids, even for high aspect ratio gaps.
摘要:
A method of forming self-aligned silicide devices which includes providing a silicon substrate having shallow trench isolation regions for defining a device area formed therein; then, forming sequentially a gate oxide layer, a polysilicon layer, a first titanium nitride layer, a titanium silicide layer, a second titanium nitride layer and a silicon nitride layer over the substrate. After a gate electrode is etched out from the above layers, a titanium layer is deposited over the device, and then a self-aligned titanium silicide layer is formed using a heating process. The use of a titanium silicide layer having protective top and bottom titanium nitride layers, compared with a single tungsten silicide layer in a conventional method, provides for a self-aligned silicide device having a rather low gate resistance; being free from narrow width effect of a titanium self-aligned silicide layer; is applicable to self-aligned contact window processes, and avoids the cross-diffusion of doped ions in the polysilicon layer of a dual gate electrode having a tungsten polycide layer.
摘要:
Pass transistors are formed on the active device regions of a substrate and a layer of silicon oxide is deposited over the transistors and the surface of the layer of silicon oxide is planarized. A thin layer of silicon nitride is deposited on the oxide layer and then vias are opened through the silicon nitride and silicon oxide layers to expose one of the source/drain regions of each of the pass transistors in the memory array. A layer of polysilicon is deposited so as to extend through the vias, forming polysilicon vertical interconnects in contact with the source/drain regions of the pass transistors and then the layer of polysilicon is patterned to form capacitor bottom plates, with each of the capacitor bottom plates connected to a corresponding source/drain region. A second layer of silicon oxide is deposited to cover the capacitor bottom plates and photolithography is performed to provide a plurality of openings through the second silicon oxide layer to each of the capacitor bottom plates. Polysilicon is deposited to fill each of the openings and chemical mechanical polishing is performed to remove excess polysilicon using the silicon oxide layer as a polish stop. The second oxide layer is stripped to leave the capacitor bottom plates with fins or posts extending vertically from the bottom plates. A capacitor dielectric is then formed over the capacitor bottom electrodes, capacitor upper electrodes are formed, and further processing continues in the conventional manner.
摘要:
A metal-semiconductor compound (72, 74, 76) is formed after a step that introduces nitrogen into regions (52, 54, 56) of the device (100). In one embodiment, a nitrogen-containing gas is exposed to surfaces (42, 44, 46) before forming a titanium layer (62) is deposited. A one-step anneal is performed to form titanium disilicide regions (72, 72, 76) that are in the C54 phase without thermal agglomeration or forming electrical shorts between the titanium disilicide regions (72, 74, 76).
摘要:
A computing device includes an input combination interface and a network interface. The network interface is enabled and/or disabled based on the usage of the input combination interface.
摘要:
A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the formation of a cap layer and the formation of gaps into which high density plasma chemical vapor deposition (HDPCVD) dielectric material is deposited. First and second antireflective coatings may be formed on the wiring line layer, the first and second antireflective coatings being made from different materials. Both antireflective coatings and the wiring line layer are etched through to form wiring lines separated by gaps. The gaps between wiring lines may be filled using high density plasma chemical vapor deposition.
摘要:
A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the formation of a cap layer and the formation of gaps into which high density plasma chemical vapor deposition (HDPCVD) dielectric material is deposited. First and second antireflective coatings may be formed on the wiring line layer, the first and second antireflective coatings being made from different materials. Both antireflective coatings and the wiring line layer are etched through to form wiring lines separated by gaps. The gaps between wiring lines may be filled using high density plasma chemical vapor deposition.