Abstract:
A dielectric elastomer actuator includes an elastomeric film and an electrode material layer on opposing sides of the film. The elastomeric film includes a first section, a second section, and a transition section disposed between the first section and the second section. The electrode material layers are disposed on the transition section and the first and second sections. The first and second sections are restrained in a pre-stretched configuration in an axial and a lateral direction, while the transition section is not restrained in the axial direction. The transition section elongates in response to the application of a voltage to the electrode material layers, such that the first and second sections move apart, in the axial direction. Likewise, the transition section is configured to contract in an absence of a voltage applied to the electrode material layers, such that the first and second sections move apart, in the axial direction.
Abstract:
A method includes assembling a first latching device and a second latching device. The first latching device includes a first support housing and a first sliding assembly. The first sliding assembly is selectively movable, relative to the first support housing, between a latched position and an unlatched position. The second latching device includes a second support housing, a second sliding assembly, and an actuating mechanism. The second support housing is substantially identical to the first support housing. The second sliding assembly is selectively movable, relative to the second support housing, between a latched position and an unlatched position. The actuating mechanism is operatively disposed in the second support housing and is configured to selectively maintain the sliding assembly in the latched position until the actuating mechanism is selectively actuated. The first latching device does not include the actuating mechanism.
Abstract:
A device for haptically communicating to an individual includes a haptic unit that is operatively coupled to a remotely located actuator to effect a haptic pulse signal.
Abstract:
A slack compensator includes a stator fixedly attachable to a base and a shuttle. The shuttle is selectably movable from a first position on the stator to a second position on the stator. The shuttle is selectably releasably attached to the stator in the first position. The shuttle is to be permanently captured upon reaching the second position. The slack compensator is attachable to an SMA wire for removing slack that develops in the SMA wire during a plurality of break-in cycles.
Abstract:
A vehicle wiper assembly includes a wiper blade having a length, and an active material disposed along the length of the wiper blade and coupled thereto. The active material includes a shape memory alloy material with a crystallographic phase that is changeable between austenite and martensite, and is elastically deformable and operatively applies a spring force against a portion of the wiper blade when the crystallographic phase is martensite.
Abstract:
A system for controlling motion of a shape memory alloy (SMA) actuator includes a damper operatively connectable to the SMA actuator and having a movable portion that moves with the SMA actuator when the SMA actuator contracts during electrical activation. An electronic switch is operatively connectable to the SMA actuator and to the damper. The electronic switch has an open position preventing electrical power flow to the SMA actuator, and a closed position permitting electrical power flow to the SMA actuator. A biasing element applies a biasing force that urges the electronic switch to the closed position. The damper overcomes the biasing element to move the switch to the open position only when velocity of the movable portion equals or exceeds a predetermined threshold velocity, and to return to the closed position when the velocity of the movable portion falls below the predetermined threshold velocity.
Abstract:
A releasable connection connects a first component to a second component. The second component includes and is manufactured from a Shape Memory Polymer (SMP), and defines a pocket. The first component includes a portion disposed within the pocket. The pocket is deformed from an initial shape permitting insertion of the portion into the pocket to assembly the releasable connection into a connected shape wherein the pocket is deformed to secure the first component relative to the second component. The pocket is transformed from the initial shape into the connected shape by heating the SMP material of the second component to a switching temperature. Re-heating the SMP second component to the switching temperature returns the pocket back to the initial shape from the connected shape to disassembly the releasable connection.
Abstract:
A system for controlling an active material actuator includes an active material actuator configured to actuate when energized, a power supply configured to supply electrical power, and a control circuitry including a plurality of circuits and configured to selectively establish an electrical connection between the active material actuator and the power supply upon receipt of an activation signal. The control circuitry is configured to de-energize at least one of the circuits when no activation signal is received by the control circuitry in order to minimize parasitic current drawn from the power supply.
Abstract:
A method of and attachment system for securing and manipulating attractive objects upon an interior vehicular surface, utilizing at least one coded magnet to selectively attach/retain the objects, and provide various other functions, including aiding in alignment, orientation, and retrieval of the objects, and activating an associated sub-system.
Abstract:
A cushion member having improved variable stiffness for a target is provided. The cushion member comprises a cushion housing having an interior with a variable internal pressure and an exterior surface for receiving the target. The cushion housing is arranged to be deformable and comprises granular particles disposed in the interior of the cushion housing. The cushion housing further comprises hollow particles disposed therein with the granular particles. Each hollow particle is compressible and hollow to define a void therein. The hollow particles have a size, a wall thickness, a material, and a bulk modulus defining infill properties thereof. The hollow particles and the granular particles are arranged to allow the cushion housing to be deformed upon contact with the target. The hollow particles and granular particles define a cushion infill having a variable stiffness based on the infill properties and the variable internal pressure of the interior.